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Foreword

This is a memory map of the Commodore 64 personal com

puter. But it's much more than that. It's a reference book

which every programmer who uses the 64 will find invaluable.

What is a memory map? It's a list of the memory locations in

a computer. But Mapping the Commodore 64 is a memory map

that goes much further. It explains the purpose of each loca

tion and shows you how to change the contents of many of

them. You can make the computer do what you want it to.

If you're a BASIC programmer, you'll find easy-to-understand

explanations of how to use the advanced features of the Com

modore 64, and how to include these features in your own

programs. If you're already using machine language to write

your own programs, you'll use this guide over and over again,

referring to specific memory locations and routines. You'll

have the most complete guide to the Commdore 64's memory

available.

As with all COMPUTE! books, the explanations are clear

and easy to understand. Beginning and advanced pro

grammers alike will find Mapping the Commodore 64 a valuable

resource.

Acknowledgments
I would like to thank Russ Davies, author of Mapping the VIC,

for his generosity in sharing the results of his research. With

out his help, and that of Dan Heeb, author of the The Com

modore 64 And VIC Tool Kit, this book would have been murh

less complete.

Of all the published sources of information about the 64, I

have found the Commodore 64 Programmer's Reference Guide to

be the most valuable for technical information. That Commo

dore has come out with such a thorough reference work so

quickly after the introduction of the machine is much to their

credit. Because of the similarities between the 64 and previous

Commodore computers, I have also relied heavily on books

that deal with the PET/CBM. Of particular interest are Pro

gramming the PET/CBM by Raeto West, which should be sub

titled "Everything You Ever Wanted to Know about Commo

dore Computers," and the PET/CBM Personal Computer Guide,



u

u
Third Edition, Osborne/McGraw-Hill. These important refer

ence works contain more information of real benefit to the 64 {J

owner than most books which deal specifically with the 64.

Finally, I would like to thank my wife Lenore. Although ,

her contribution to this book was nontechnical in nature, it ^
was as important as any other.

u

u

u

VI



Introduction

To many computer users, the concept of a memory map may

be an unfamiliar one. Simply stated, it is a guide to your com

puter's internal hardware and software. A memory map can

help you use the PEEK and POKE instructions to extend your

BASIC programming powers. If you plan to do machine lan

guage programming, it is necessary that you be able to find

your way around the system.

Many computer owners think of a program as something

they buy at a store and feed into the computer so that it will

let them play games, or do word processing, or keep financial

records. But this type of applications software is by no means

the only kind.

It is important to remember that a computer cannot do

anything without some kind of program. When the computer

displays the READY prompt, or blinks the cursor, or displays

the letters that you type in, it can only do so by executing a

program. In the examples above, it is the master control pro

gram, the Operating System (OS), which is being executed.

When you give the computer a command such as LOAD,

the BASIC interpreter program translates the English-like re

quest to the language of numbers which the computer under

stands. The Operating System and BASIC interpreter programs

are contained in permanent Read Only Memory (ROM), and

are available as soon as you turn the power on. Without them,

your computer would be a rather expensive paperweight.

This permanent software co-exists inside your computer

with the applications program that you load. Since the system

software performs many of the same functions as the applica

tions program (such as reading information from the keyboard

and displaying it on the screen), it is often possible for the ap

plications program to make use of certain parts of the Operat

ing System. This not only makes the task of the programmer

easier, but in some cases it allows him or her to do things that

otherwise would not be possible.

The Commodore 64 also has hardware support chips

which enable the graphics display, sound synthesis, and com

munications with external devices. Since these chips are ad

dressed like memory, they occupy space in our map. Control
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over these chips, and the graphics, sound, and I/O functions

they make possible, can only be accomplished by manipula

tion of the memory addresses which correspond to these de

vices. Therefore, a guide to these addresses is necessary in

order to take advantage of the graphics, music, and commu

nications power that they offer.

The purpose of this book is to describe the memory loca

tions used by the system, and to show, wherever possible,

how to utilize them in your own programs. The book should

clear up some of the mystery surrounding the way your com

puter works.

How to Use This Book
The Commodore 64 can communicate with 64K or 65536

(64*1024) bytes of memory. Each of these bytes of memory

can store a number from 0 to 255. The computer can read

(and sometimes write) information from any of these 65536

locations by using its address, a number from 0 to 65535.

Bits and Bytes

Each byte is made up of eight binary digits called bits. These

bits are the computer's smallest unit of information. They can

contain only the number one or the number zero, but when

combined, they can be used to form any number needed. To

see how that is possible, let's look at a single bit.

A single bit can only be a one or a zero. But if two bits

are combined the number increases.

00,01,10,11

That makes four possible combinations. And if a third bit is

added;

000,001,010,011,100,101,110,111

When eight bits are put together, the number of combinations

increases to 256. These eight bits are called a byte and can be

used to represent the numbers from 0 to 255.

This system of numbering is known as binary (or base

two). It works much like the decimal (base ten) system. In the

base ten numbering system, the rightmost digit is known as

the one's place, and holds a number from 0 to 9. The next

place to the left is known as the ten's place, and also holds a

number from 0 to 9, which represents the number of times the

one's place has been used in counting (the number of tens).

In the binary system, there is a one's place, then a two's

viii



place, a four's place, etc. The bits are counted from right to

left, starting with Bit 0. Here are the values of each bit:

Bit

Bit

Bit

Bit

Bit

Bit

Bit

Bit

0 = 1

1 = 2

2 = 4

3 = 8

4 = 16

5 = 32

6 = 64

7 = 128

If all the bits are added together (128+64+32+16+8+4+2+1),

they total 255, which is the maximum value of one byte. What

if you need to count higher than 255? Use two bytes.

By using a second byte to count the number of 256's,

65536 combinations are possible (256*256). This is the same

number as the bytes of memory in the Commodore 64. There

fore, any byte can be addressed by a number using a maxi

mum of two bytes.

When discussing large, even units of memory, the second

byte, the number of 256's, is often used alone. These units are

known as pages. Page 0 starts at location zero (0*256), Page 1

starts at location 256 (1*256), etc.

You may see the terms low-byte, high-byte order or LSB

(Least Significant Byte), MSB (Most Significant Byte) order,

mentioned later in this book. That refers to the way in which

the Commodore 64 usually deals with a two-byte address. The

byte of the address that represents the number of 256's (MSB)

is usually stored higher in memory than the part that stores

the leftover value from 0 to 255 (LSB). Therefore, to find the

address, you must add the LSB to 256* MSB.

Hexadecimal

One other numbering system that is used in speaking about

computers is the hexadecimal (base 16) system. Each hexa

decimal digit can count a number from 0 to 15. Since the

highest numeric digit is 9, the alphabet must be used: A=10,

B = ll, and so on up to F=15. With just two digits, 256

combinations are possible (16*16). That means that each byte

can be represented by just two hexadecimal digits, each of

which stands for four bits of memory. These four-bit units are
smaller than a byte, so they are known as nybbles.
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Since programmers often find that hexadecimal numbers

are easier to use than binary or decimal numbers, many num

bers in this book are given in both decimal and hexadecimal

format. A dollar sign ($) has been placed in front of each

hexadecimal number.

AND, OR and EOR

Certain functions on the 64 (particularly those using the sound

and graphics chips) are controlled by a single bit. You will

often see references to setting Bit 6 to a value of one, or set

ting Bit 3 to a value of zero. This can be done by adding or

subtracting the bit value for that particular bit from the value

of the whole byte.

Adding or subtracting the bit value will work only if you

know the status of that bit already. If Bit 4 is off, and you add

16 (the bit value of Bit 4) to the byte, it will turn Bit 4 on. But

if it were on already, adding 16 would turn Bit 4 off, and an

other bit on.

This is where logical (sometimes called Boolean) functions

come in handy. Two functions, OR and AND, are available in

BASIC, and a third, EOR, can be used in machine language

programming for bit manipulation.

AND is usually used to zero out (or mask) unwanted bits.

When you AND a number with another, a 1 will appear in the

resulting number only if identical bits in the ANDed numbers

had been set to 1. For example, if you wanted to turn off Bit 4

in the number 154, you could AND it with 239 (which is the

maximum bit combination minus the bit value to be masked;

255-16):

10011010 = 154

AND 11101111 = 239

= 10001010 = 138

By using the AND function, nothing would be harmed if we

tried to turn off a bit that wasn't on. You can always turn a bit

off by using the formula BYTEVALUE AND (255-BITVALUE).

Remember, there must be a 1 in the same bit of both numbers

in order for the same bit in the result to have a 1.

The opposite function, turning a bit on, is performed by

the OR statement. The OR function puts a 1 in the bit of the

resulting number if there was a 1 in the same bit in either of

the two numbers. For example, to turn Bit 4 back on in the
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number 138, we would use the statement 138 OR 16 (the bit

value for the bit we want to turn on):

10001010 = 138

OR 00010000 = 16

H = 10011010 = 154

Again, no harm would be done if the bit was already on. A bit

O can always be turned on with the formula BYTEVALUE OR
BITVALUE.

f*. The third operation, EOR, can be done only in machine

language. It is used to reverse the value of a bit. If the bit of

the second number holds a 1, it will reverse the value of the

O corresponding bit in the first number. Therefore, to switch all
of the bits, you can EOR a number by 255:

10011010 = 154

EOR 11111111 = 255

= 01100101 = 101

Notice that this produces the complement of the original num

ber (256 minus the number). Anytime you wish to flip a bit

from 0 to 1, or 1 to 0, you can EOR it with the value of that

bit.

The Format of Entries
The entries in this book are organized at the most general lev

el by large blocks (the 256 page 0 locations, for example, or

the 8192 locations in the BASIC ROM). At the beginning of

these blocks, you will often find an explanation that will give

you an idea of how the locations in that section are related.

Usually, this overview will make it easier to understand the

more detailed explanations of the individual locations in that

block.

Within these larger blocks, you will sometimes see a few

locations grouped under the heading Location Range. This

grouping is done where the locations are so interrelated that it

would be meaningless to try to explain one without explaining

them all.

Finally come the entries for individual locations. These

give the address, first in decimal, then in hexadecimal, and

sometimes a label. This label is merely a mnemonic device,

used in machine language programming for easier reference to
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a particular memory location. Although Commodore has not

released the source code for their Operating System or BASIC,

they have published some of these labels in the Commodore 64

Programmer's Reference Guide.

Other labels used here are taken from Jim Butterfield's

PET memory maps, which have enjoyed a wide circulation

among Commodore users. Their use here should help 64 own

ers adapt information about the PET to their own machines.

The mnemonic label for an entry is followed by a one-line

description of the location. Often, a more detailed explanation

will appear under that, ranging from a couple of sentences to

several pages. Occasionally, program samples will accompany

these explanations.

Sometimes the single-line descriptions will identify a loca

tion as a flag, a vector, or a pointer. A flag is just a number

that the program uses to store the outcome of a previous oper

ation. A pointer or vector is usually a two-byte location that

holds a significant address. Generally, the term pointer is used

when the address points to the start of some data, and vector

is used when the address points to the start of a machine lan

guage program. However, sometimes these terms will be used

interchangeably, with the meaning clear from the context.
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Page 0

Memory locations 0-255 ($0-$FF) have a special significance in 6502

machine language programming (the 6510 microprocessor in the

Commodore 64 shares the same instruction set as the 6502). Since

these addresses can be expressed using just one byte, instructions

which access data stored in these locations are shorter and execute

more quickly than do instructions which operate on addresses in

higher memory, which require two bytes.

Because of this relatively fast execution time, most 6502

software makes heavy use of zero-page locations. The 64 is no ex

ception, and uses this area for many important system variables and

pointers.

In addition, locations 0 and 1 have special Input/Output func

tions on the 6510. In the case of the 64, this on-chip I/O port is

used to select the possible combinations of ROM, as we will see be

low, and to control cassette I/O.

Location Range: 0-143 ($0-$8F)
BASIC Working Storage

This portion of zero page is used by BASIC only. Therefore, a pro

gram written entirely in machine language that does not interact

with BASIC can freely use this area.

0 $0 D6510
6510 On-Chip I/O DATA Direction Register

Bit 0: Direction of Bit 0 I/O on port at next address. Default=1 (out

put)

Bit 1: Direction of Bit 1 I/O on port at next address. Default=1 (out

put)

Bit 2: Direction of Bit 2 I/O on port at next address. Default=l (out

put)

Bit 3: Direction of Bit 3 I/O on port at next address. Default=l (out

put)

Bit 4: Direction of Bit 4 I/O on port at next address. Default=0 (in

put)

Bit 5: Direction of Bit 5 I/O on port at next address. Default=l (out

put)

Bit 6: Direction of Bit 6 I/O on port at next address. Not used.

Bit 7: Direction of Bit 7 I/O on port at next address. Not used.



This location is the first of a number of hardware registers that we

will discuss. Although they can be written to and/or read like RAM,

they are connected to hardware devices, and their contents affect the

operation of the devices.

Each bit of this Data Direction Register determines whether the

contents of the corresponding bit on the Internal I/O Port (see loca

tion 1) can be written to by peripheral devices. If the bit is set to 0, it

indicates the direction of data flow as Input, which means that the

corresponding bit of the I/O Port will be affected by peripheral de

vices. If the bit is set to 1, it indicates Output. On the 64, only Bits 0-

5 are significant. On power-up, this register is set to 239 ($EF),

which indicates that all bits, except for Bit 4 (which senses the cas

sette switch), are set up for Output.

1 $1 R6510

Bit 0: LORAM signal. Selects ROM or RAM at 40960 ($A000).

1=BASIC, 0=RAM

Bit 1: HIRAM signal. Selects ROM or RAM at 57344 ($E000).

1 = Kernal, 0=RAM

Bit 2: CHAREN signal. Selects character ROM or I/O devices. 1 =

I/O, 0=ROM

Bit 3: Cassette Data Output line.

Bit 4: Cassette Switch Sense. Reads 0 if a button is pressed, 1 if not.

Bit 5: Cassette Motor Control. A 1 turns the motor on, a 0 turns it off.

Bits 6-7: Not connected—no function presently defined.

The chief function of this register is to determine which blocks of

RAM and ROM the 6510 microprocessor will address. The Commo

dore 64 comes with 64K RAM, even though it normally does not use

all of that RAM at once. In addition, it has an 8K BASIC Interpreter

ROM, an 8K Operating System Kernal ROM, a 4K Character Genera

tor ROM, a Sound Interface Device (SID), a 6566 Video Interface

Controller (VIC-II), and two 6526 Complex Interface Adapter chips.

To address all of these at once would require 88K, 24K past the

addressing limit of the 6510 microprocessor. In order to allocate ad

dress space, the I/O Port is used to affect the addressing lines, and

thus determine which segments of RAM and ROM will be addressed

at any one time.

Bit 0. This bit controls the LORAM signal. A 0 in this bit posi

tion switches the BASIC ROM out, and replaces it with RAM at ad

dresses 40960-49151 ($A000-$BFFF). The default value of this bit is 1.

Bit 1. Bit 1 controls the HIRAM signal. A 0 in this bit position

switches the Kernal ROM out, and replaces it with RAM at 57344-

65535 ($E000-$FFFF). As the BASIC interpreter uses the Kernal, it is

also switched out and replaced by RAM. The default value of this bit

is 1.
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This system allows a wide range of combinations of RAM and

ROM to be utilized. Of course, the BASIC programmer will have lit

tle need, in the ordinary course of events, to switch out the BASIC

ROM and the Kernal. To do so without first replacing them would

just hang the system up. But one way to make use of this feature is

to move the contents of ROM to the corresponding RAM addresses.

That way, you can easily modify and customize the BASIC interpret

er and OS Kernal routines, which are ordinarily fixed in ROM. For

example, to move BASIC into RAM, just type:

FOR 1 = 40960 TO 49151:POKE I, PEEK (I):NEXT

Though it appears that such a program would not do anything, it in

fact copies bytes from ROM to RAM. This is because any data which

is written to a ROM location is stored in the RAM which resides at

the same address. So while you are PEEKing ROM, you are

POKEing RAM. To switch to your RAM copy of BASIC, type in:

POKE 1,PEEK (1) AND 254.

Now you are ready to make modifications. Examples of simple modi

fications include changing the text which the interpreter prints, such

as the READY prompt, the power-up message, or the keyword table.

An example of the latter would be POKE 41122,69. This

changes the FOR keyword to FER, so that BASIC would respond

normally to a FER-NEXT loop, but fail to recognize FOR as syntacti

cally correct.

On the more practical side, you could change the prompt that

INPUT issues to a colon, rather than a question mark:

POKE 43846,58

You are not limited to just cosmetic changes of text. Jim Butterfield

has given an example in COMPUTE! magazine of changing the in

terpreter so that it assigns a null string the ASCII value 0. In the

ROM version, the command PRINT ASC ("") will return 7ILLEGAL

QUANTITY ERROR. This is inconvenient when INPUTting a string,

because if the user presses RETURN and you try to check the ASCII

value of the string that has been entered, you will get this error. By

entering POKE 46991,5, this is changed so that PRINT ASC ("")

now responds with a zero.

For the more serious machine language programmer, it is quite

feasible to add new commands or modify existing ones by diverting

the vectors which are discussed in the section covering the BASIC

interpreter ROM. For a good example of this technique, see the arti

cle "Hi-Res Graphics Made Simple" by Paul Schatz in COMPUTERS

First Book of Commodore 64 Sound and Graphics. The program ex

ample there inserts new graphics commands into a RAM version of

BASIC. When you want to switch back to the ROM BASIC, enter

POKE 1,PEEK (1) OR 1.



For machine language applications, it would be possible to re

place the ROM programs with an entirely different operating system,

or an application that has its own screen editing and I/O functions

included. Such an application would first have to be loaded from

disk into RAM. A language other than BASIC could be loaded, and

could then just switch out the BASIC ROM, while still using the OS

Kernal.

Or a spreadsheet application that contained its own I/O routines

could switch out all ROMs and have the use of all of RAM that is

not actually needed for the program itself, for data. It should be re

membered, however, that before switching the Kernal out, it is nec

essary to disable interrupts, as the vectors for these interrupts are

contained in the Kernal.

Bit 2. This bit controls the CHAREN signal. A 0 in this position
switches the character generator ROM in, so that it can be read by

the 6510 at addresses 53248-57343 ($D000-$DFFF). Normally, this

bit is set to 1, so that while the VIC-II chip has access to the charac

ter generator ROM for purposes of creating the screen display, the

user cannot PEEK into it. Since this ROM is switched into the system

in the same location as the I/O devices (SID chip, VIC-II chip, and

6526 CIA's), no I/O can occur when this ROM is switched in.

The ability to switch in the character generator ROM is very

useful to the programmer who wishes to experiment with user-

defined characters. Modified character graphics is one of the more

powerful graphics tools available, but often the user will not want to

redefine a whole character set at one time. By reading the character

ROM and duplicating its contents in RAM, the user can replace only

a few characters in the set. The method for reading this ROM into

RAM from BASIC is as follows:

10 POKE 56333,127:POKE1,PEEK(1) AND 251: FOR 1 = 0 TO 2048

20 POKE BASE+I,PEEK(53248+I):NEXT:POKE 1,PEEK(1) OR 4:

POKE 56333,129

The first POKE is necessary to turn off the system timer interrupt.

Since the I/O devices are addressed in the same space as the charac

ter ROM, switching that ROM in switches all I/O out, making it

necessary to turn off any interrupts which use these devices.

The second POKE is the one which switches in the character

ROM. The program loop then reads this ROM memory into RAM,

starting with the address BASE. Note that this address should start

on an even 2K boundary (an address evenly divisible by 2048) with

in the block of memory presently being addressed by the VIC-II chip

(for more information on where to put user-defined character sets,

and how to use them, see the section on the VIC-II chip, under loca

tion 53272 ($D018), the section on the character ROM at 49152

($C000), and the section on banking VIC-II memory at 56576

($DD00)). After reading the contents of the ROM into RAM, the next



POKEs switch out the character ROM, and restore the interrupt.

It should be noted that while Bits 0-2 of this register allow soft

ware control of some signals that determine the memory configura

tion that is used by the Commodore 64 at any given time, they are

not the only determining factor. Signals can also be generated by

means of plug-in expansion cartridges which are connected to the

expansion port, and these can change the memory map.

Two lines located on the expansion port are called GAME and

EXROM. When used in conjunction with the software-controlled

lines noted above, these two hardware lines can enable cartridge

ROM to replace various segments of ROM and/or RAM.

Possible configurations include 8K of cartridge ROM to be

switched in at $8000-$9FFF, for a BASIC enchancement program; an

8K cartridge ROM at $A000-$BFFF, replacing BASIC; or at $E000-

$FFFF, replacing the Kernal, or a 16K cartridge at $8000-$C000.

When cartridge ROM is selected to replace the Kernal, a Max

emulator mode is entered, which mimics the specification of the ill-

fated Max Machine, a game machine which Commodore never pro

duced for sale in the U.S. In this mode, only the first 6K of RAM are

used, there is no access to the character ROM, and graphics data

such as character dot-data is mapped down from 57344 ($E000) to

8192 ($2000). Further hardware information may be obtained from

the Commodore 64 Programmer's Reference Guide.

Bits 3-5 of this register have functions connected with the

Datassette recorder. These are as follows:

Bit 3. This is the Cassette Data Output line. This line is con

nected to the Cassette Data Write line on the cassette port, and is

used to send the data which is written to tape.

Bit 4. This bit is the Cassette Switch Sense line. This bit en

ables a program to tell whether or not one of the buttons that moves

the tape on the cassette recorder is pressed down. If the switch on

the recorder is down, this bit will have a value of 1. Remember that

Bit 4 of the data direction register at location 0 must contain a 0 for

this bit to properly reflect the status of the switch.

Bit 5. Bit 5 is the Cassette Motor Control. Setting this bit to

zero allows the motor to turn when you press one of the buttons on

the recorder, while setting it to one disables it from turning.

Most of the time, the setting of this bit will be controlled by the

interrupt routine that is used to read the keyboard every sixtieth of a

second. If none of the buttons on the recorder is pressed, that inter

rupt routine shuts the motor off and sets the interlock at location 192

($C0) to zero. When a button is pressed, if the interlock location is

zero, Bit 5 of this register is set to zero to turn the motor on.

When the interlock location contains a zero, the keyscan routine

will not let you control the setting of this bit of the register (and the

interlock is always set to zero when no buttons are pressed). In order
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for you to gain control of the motor, you must POKE a nonzero val

ue into 192 after a button on the recorder has been pressed. You can

then shut off the motor and turn it back on as you please, by ma

nipulating this bit, so long as a button stays pressed.

2 $2
Unused

3-4 $3-$4 ADRAY1
Vector: Routine to Convert a Number from Floating Point to

Signed Integer

This vector points to the address of the BASIC routine which con

verts a floating point number to an integer. In the current Kernal

version, the address that it points to is 45482 ($B1AA). Disassembly

of the ROMs indicates that BASIC does not use this vector. How

ever, it may be of real assistance to the programmer who wishes to

use data that is stored in floating point format. The parameter that is

passed by the USR command is available only in that format, for ex

ample.

Since it is extremely difficult to decipher and use a floating point

number, the simplest way to deal with such data is to use the con

version routines that are built into BASIC to change it into a two-

byte signed integer. This could be accomplished by jumping directly

into the BASIC ROM, if you know the location of the routine. It is

preferable to use this vector because it will always point to the loca

tion of the routine. Therefore, if the address changes in future ver

sions of the 64 or future Commodore computers, you won't have to

modify your program to make it work with them.

See the entry for the USR vector at 785 ($311) for an explana

tion of how to use this routine in connection with the USR com

mand.

5-6 $5-$6 ADRAY2
Vector: Routine to Convert a Number from Integer to Floating

Point

This vector points to the address of the BASIC routine which con

verts an integer to a floating point number. This routine is currently

located at 45969 ($B391). BASIC does not appear to reference this

location. It is available for use by the programmer who needs to

make such a conversion for a machine language program that inter

acts with BASIC. For an explanation of how to use this routine in

connection with the USR command, see the entry for the USR vector

at 785 ($311).
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7 $7 CHARAC
Search Character for Scanning BASIC Text Input

This location and the next are used heavily by the BASIC routines

that scan the text that comes into the buffer at 512 ($200), in order

to detect significant characters such as quotes, comma, the colon

which separates BASIC statements, and end-of-line. The ASCII

values of such special characters are usually stored here.

This location is also used as a work area by other BASIC

routines that do not involve scanning text.

8 $8 ENDCHR
Search Character for Statement Terminator or Quote

Like location 7, this location is used as a work byte during the

tokenization of a BASIC statement. Most of the time, its value is 0 or

34.

9 $9 TRMPOS
Column Position of the Cursor before the Last TAB or SPC

TRMPOS is used by TAB and SPC. The cursor column position prior

to the TAB or SPC is moved here from 211 ($D3), and is used to cal

culate where the cursor ends up after one of these functions is in

voked. Note that the value contained here shows the position of the

cursor on a logical line. Since one logical line can be up to two phys

ical lines long, the value stored here can range from 0 to 79.

10 $A VERCK
Flag: LOAD or VERIFY

BASIC uses one Kernal routine to perform either the LOAD or VERI

FY function, depending on whether the Accumulator (.A) is set to 0

or 1 upon entry to the routine. BASIC sets the value of VERCK to 0

for a LOAD, or 1 for a VERIFY. Its contents are passed to the Kernal

LOAD routine, which in turn stores it in location 147 ($93).

11 $B COUNT
Index into the Text Input Buffer/Number of Array Subscripts

The routines that convert the text in the input buffer at 512 ($200)

into lines of executable program tokens, and the routines that link

these program lines together, use this location as an index into the

input buffer area. When the job of converting text to tokens is fin

ished, the value in this location is equal to the length of the

tokenized line.

The routines which build an array or locate an element in an ar

ray use this location to calculate the number of DIMensions called

for and the amount of storage required for a newly created array, or

the number of subscripts specified when referencing an array ele

ment.



12

12 $C DIMFLG
Flags for the Routines That Locate or Build an Array

This location is used as a flag by the routines that build an array or

reference an existing array. It is used to determine whether a variable

is an array, whether the array has already been DIMensioned, and

whether a new array should assume the default dimensions.

13 $D VALTYP
Flag: Type of Data (String or Numeric)

This flag is used internally to indicate whether data being operated

upon is string or numeric. A value of 255 ($FF) in this location indi

cates string data, while a 0 indicates numeric data. This determina

tion is made every time a variable is located or created.

14 $E INTFLG
Flag: Type of Numeric Data (Integer or Floating Point)

If data which BASIC is using is determined to be numeric, it is fur

ther classified here as either a floating point number or as an integer.

A 128 ($80) in this location identifies the number as an integer, and

a 0 indicates a floating point number.

15 $F GARBFL
Flag for LIST, Garbage Collection, and Program Tokenization

The LIST routine uses this byte as a flag to let it know when it has

come to a character string in quotes. It will then print the string,

rather than search it for BASIC keyword tokens.

The garbage collection routine uses this location as a flag to in

dicate that garbage collection has already been tried before adding a

new string. If there is still not enough memory, an OUT OF MEM

ORY message will result.

This location is also used as a work byte for the process of con

verting a line of text in the BASIC input buffer (512, $200) into a

linked program line of BASIC keyword tokens.

16 $10 SUBFLG
Flag: Subscript Reference to an Array or User-Defined Function

Call (FN)

This flag is used by the PTRGET routine which finds or creates

a variable, at the time it checks whether the name of a variable is

valid. If an opening parenthesis is found, this flag is set to indicate

that the variable in question is either an array variable or a user-

defined function.

You should note that it is perfectly legal for a user-defined func

tion (FN) to have the same name as a floating point variable. More

over, it is also legal to redefine a function. Using a FN name in an

already defined function results in the new definition of the function.

10
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17 $11 INPFLG
Flag: Is Data Input to GET, READ or INPUT?

Since the keywords GET, INPUT, and READ perform similar func

tions, BASIC executes some of the same instructions for all three.

There are also many areas of difference, however, and this flag indi

cates which of the three keywords is currently being executed, so

that BASIC will know whether or not to execute the instructions

which relate to the areas in which the commands differ (152

($98)=READ, 64 ($40)= GET, 0=INPUT).

As a result, INPUT will show the ? prompt, will echo characters

back to the screen, and will wait for a whole line of text ended by a

carriage return. GET gives no prompt and accepts one character

without waiting. The colon character and the comma are valid data

for GET, but are treated as delimiters between data by INPUT and

READ.

As each command has its own error messages, this flag is used

to determine the appropriate message to issue in case of an error.

18 $12 TANSGN
Flag: Sign of the Result of the TAN or SIN Function

This location is used to determine whether the sign of the value re

turned by the functions SIN or TAN is positive or negative.

Additionally, the string and numeric comparison routines use

this location to indicate the outcome of the comparison. For a com

parison of variable A to variable B, the value here will be 1 if A is

greater than B, 2 if A equals B, and 4 if A is less than B. If more than

one comparison operator was used to compare the two variables

(e.g., >= or <= ), the value here will be a combination of the

above values.

19 $13 CHANNL
Current I/O Channel (CMD Logical File) Number

Whenever BASIC inputs or outputs data, it looks here to determine

which I/O device is currently active for the purpose of prompting or

output control. It uses location 184, $B8 for purposes of deciding

what device actually to input from or output to.

When the default input device (number 0, the keyboard) or out

put device (number 3, the display screen) is used, the value here will

be a zero, and the format of prompting and output will be the stan

dard screen output format.

When another device is used, the logical file number (CMD

channel number) will be placed here. This lets the system know that

it may have to make some subtle changes in the way it performs the

I/O operation. For example, if TAB is used with the PRINT com

mand, cursor right characters are used if the device PRINTed to is

the screen. Otherwise, spaces are output when the number here is

11
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other than zero (the assumption being that you can't tab a printer

like you can the screen).

Likewise, the ? prompt for INPUT is suppressed if the file num

ber here is nonzero, as is the EXTRA IGNORED message, and input

of a carriage return by itself is ignored, rather than being treated as a

null string (""). Therefore, by OPENing the screen as a device, and

issuing the CMD statement, you can force the suppression of the ?

prompt, and the other effects above.

CMD places the new output file number here, and calls the

Kernal to open the device for output, leaving it LISTENing for out

put (such as the READY prompt, which is diverted to the new de

vice).

Many routines reset this location and UNLISTEN the device, de

feating the CMD and once again sending output to the screen. If an

error message has to be displayed, for example, this location will be

reset and the message will be displayed on the screen. GET, GET#,

INPUT, INPUT#, and PRINT# all will reset this location after the

I/O is completed, effectively redirecting output back to the screen.

PRINT and LIST are the only I/O operations that will not undo the

CMD.

This location can also be used to fool BASIC into thinking that

data it is reading from the tape is actually being entered into the

keyboard in immediate mode.

For a look at a technique that uses a different approach to accom

plish the same thing for disk or tape users, see location 512

($200), the keyboard buffer.

20-21 $14-$ 15 LINNUM
Integer Line Number Value

The target line number for GOTO, LIST, ON, and GOSUB is stored

here in low-byte, high-byte integer format, as is the number of a

BASIC line that is to be added or replaced.

LIST saves the highest line number to list (or 65535—$FFFF if

program is to be listed to the end) at this location.

GOTO tests the target line number to see if it is greater than the

line number currently being executed. If it is greater, GOTO starts its

search for the target line at the current line number. If it is not

greater, GOTO must search for the target line from the first line of

the program. It is interesting to note that the test is of the most

significant byte only. Therefore, INT (TARGETLINE/256) must be

greater than INT(CURRENT LINE/256) in order for the search to

start with the current line, instead of at the beginning of the

program.

PEEK, POKE, WAIT, and SYS use this location as a pointer to

the address which is the subject of the command.

12
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22 $16 TEMPPT
Pointer to the Next Available Space in the Temporary String

Stack

This location points to the next available slot in the temporary string

descriptor stack located at 25-33 ($19-$21). Since that stack has room

for three descriptors of three bytes each, this location will point to 25

($19) if the stack is empty, to 28 ($1C) if there is one entry, to 31

($1F) if there are two entries, and to 34 ($22) if the stack is full.

If BASIC needs to add an entry to the temporary string descrip

tor stack, and this location holds a 34, indicating that the stack is

full, the FORMULA TOO COMPLEX error message is issued. Other

wise, the entry is added, and three is added to this pointer.

23-24 $17-$ 18 LASTPT
Pointer to the Address of the Last String in the Temporary

String Stack

This pointer indicates the last slot used in the temporary string de

scriptor stack. Therefore, the value stored at 23 ($17) should be 3

less than that stored at 22 ($16), while 24 ($18) will contain a 0.

25-33 $19-$21 TEMPST
Descriptor Stack for Temporary Strings

The temporary string descriptor stack contains information about

temporary strings which have not yet been assigned to a string vari

able. An example of such a temporary string is the literal string

"HELLO" in the statement PRINT "HELLO".

Each three-byte descriptor in this stack contains the length of

the string, and its starting and ending locations, expressed as dis

placements within the BASIC storage area.

34-37 $22-$25 INDEX
Miscellaneous Temporary Pointers and Save Area

This area is used by many BASIC routines to hold temporary point

ers and calculation results.

38-42 $26-$2A RESHO
Floating Point Multiplication Work Area

This location is used by BASIC multiplication and division routines.

It is also used by the routines which compute the size of the area re

quired to store an array which is being created.

43-44 $2B-$2C TXTTAB
Pointer to the Start of BASIC Program Text

This two-byte pointer lets BASIC know where program text is stored.

Ordinarily, such text is located beginning at 2049 ($801). Using this

13
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pointer, it is possible to change the program text area. Typical rea

sons for doing so include:

1. Conforming the memory configuration to that of other Com

modore computers. On 32K PET and CBM computers, for example,

screen memory starts at 32768 ($8000), and BASIC text begins at

1025 ($401). You can emulate this configuration with the 64 with the

following short program:

10 POKE 55,0:POKE 56,128: CLR: REM LOWER TOP OF ME

MORY TO 32768

20 POKE 56576,PEEK(56576) AND 253: REM{2 SPACES}EN

ABLE BANK 2

30 POKE 53272,4: REM TEXT DISPLAY MEMORY NOW START

S AT 32768

40 POKE 648,128:REM OPERATING SYSTEM PRINTS TO SCR

EEN AT 32768 (128*256)

50 POKE 44,4:POKE 1024,0: REM MOVE START OF BASIC

{SPACEjTO 1025 (4*256+1)

60 POKE 792,193: REM DISABLE RESTORE KEY

70 PRINT CHR$(147);MNOW CONFIGURED LIKE PET":NEW

80 REM ALSO SEE ENTRIES FOR LOCATION 55, 56576, AN

D 648

Such reconfiguring can be helpful in transferring programs from the

64 to the PET, or vice versa. Since the 64 automatically relocates

BASIC program text, it can load and list PET programs even though

the program file indicates a loading address that is different from the

64 start of BASIC. The PET does not have this automatic relocation

feature, however, and it loads all BASIC programs at the two-byte

address indicated at the beginning of the disk or tape file.

So if the PET loads a 64 program at its normal starting address

of 2049 ($801), it will not recognize its presence because it expects a

BASIC program to start at 1025 ($401). Therefore, if you want to let

a PET and 64 share a program, you must either reconfigure the 64 to

start BASIC where the PET does, or reconfigure the PET to start

BASIC where the 64 does (with a POKE 41,8:POKE 2048,0).

2. Raising the lowest location used for BASIC text in order to

create a safe area in low memory. For example, if you wish to use

the high-resolution graphics mode, you may want to put the start of

screen memory at 8192 ($2000). The high-resolution mode requires

8K of memory, and you cannot use the lowest 8K for this purpose

because it is already being used for the zero-page assignments.

Since BASIC program text normally starts at 2049 ($801), this

means that you only have 6K for program text before your program

runs over into screen memory. One way around this is by moving

the start of BASIC to 16385 ($4001) by typing in direct entry mode:

POKE 44,64: POKE 64*256, 0:NEW

14
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Other uses might include setting aside a storage area for sprite shape

data, or user-defined character sets.

3. Keeping two or more programs in memory simultaneously. By

changing this pointer, you can keep more than one BASIC program

in memory at one time, and switch back and forth between them.

Examples of this application can be found in COMPUTERS First

Book ofPET/CBM, pages 66 and 163.

This technique has a number of offshoots that are perhaps of

more practical use.

a) You can store two programs in memory simultaneously for

the purpose of appending one to the other. This technique requires

that the line numbers of the two programs do not overlap. (See Pro

gramming the PET/CBM by Raeto Collin West, pages 41-42, for a

discussion of this technique.)

b) You can have two programs in memory at once and use the

concept in (2) above to allow an easier way to create a safe area in

low memory. The first program is just one line that sets the start of

BASIC pointer to the address of the second program which is located

higher in memory, and then runs that second program.

4. Since this address is used as the address of the first byte to

SAVE, you can save any section of memory by changing this pointer

to indicate the starting address, and the pointer 45-46 ($2D-$2E) to

indicate the address of the byte after the last byte that you wish to

save.

45-46 $2D-$2E VARTAB
Pointer to the Start of the BASIC Variable Storage Area

This location points to the address which marks the end of the

BASIC program text area, and the beginning of the variable storage

area. All nonarray variables are stored here, as are string descriptors

(for the address of the area where the actual text of strings is stored,

see location 51, $33).

Seven bytes of memory are allocated for each variable. The first

two bytes are used for the variable name, which consists of the

ASCII value of the first two letters of the variable name. If the vari

able name is a single letter, the second byte will contain a zero.

The seventh bit of one or both of these bytes can be set (which

would add 128 to the ASCII value of the letter). This indicates the

variable type. If neither byte has the seventh bit set, the variable is

the regular floating point type. If only the first byte has its seventh

bit set, the variable is a string. If only the second byte has its sev

enth bit set, the variable is a defined function (FN). If both bytes

have the seventh bit set, the variable is an integer.

The use of the other five bytes depends on the type of variable.

A floating point variable will use the five bytes to store the value of

the variable in floating point format. An integer will have its value
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stored in the third and fourth bytes, high byte first, and the other

three will be unused.

A string variable will use the third byte for its length, and the

fourth and fifth bytes for a pointer to the address of the string text,

leaving the last two bytes unused. Note that the actual string text

that is pointed to is located either in the part of the BASIC program

where the string is first assigned a value, or in the string text storage

area pointed to by location 51 ($33).

A function definition will use the third and fourth bytes for a

pointer to the address in the BASIC program text where the function

definition starts. It uses the fifth and sixth bytes for a pointer to the

dependent variable (the X of FN A (X)). The final byte is not used.

Knowing something about how variables are created can help

your BASIC programming. For example, you can see that nonarray

integer variables take up no less space than floating point variables,

and since most BASIC commands convert the integers to floating

point, they do not offer a speed advantage either, and in many cases

will actually slow the program down. As will be seen below, how

ever, integer arrays can save a considerable amount of space.

Variables are stored in the order in which they are created. Like

wise, when BASIC goes looking for a variable, it starts its search at

the beginning of this area. If commonly used variables are defined at

the end of the program, and are thus at the back of this area, it will

take longer to find them. It may help program execution speed to de

fine the variables that will be used most frequently right at the be

ginning of the program.

Also, remember that once created, variables do not go away

during program execution. Even if they are never used again, they

still take up space in the variable storage area, and they slow down

the routine that is used to search for variables that are referenced.

Another point to consider about the order in which to define

variables is that arrays are created in a separate area of memory

which starts at the end of the nonarray variable area. Therefore, ev

ery time a nonarray variable is created, all of the arrays must be

moved seven bytes higher in memory in order to make room for the

new variable. Therefore, it may help performance to avoid defining

nonarray variables after defining arrays.

This pointer will be reset to one byte past the end of the BASIC

program text whenever you execute the statements CLR, NEW, RUN,

or LOAD. Adding or modifying a BASIC statement will have the

same effect, because the higher numbered BASIC statements have to

be moved up into memory to make room for the new statements,

and can therefore overwrite the variable storage area. This means

that if you wish to check the value of a variable after stopping a pro

gram, you can only do so before modifying the program.
The exception to the above is when the LOAD command is
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issued from a program. The purpose of not resetting this pointer in

such a case is to allow the chaining of programs by having one pro

gram load and run the next (that is also why a LOAD issued from a

program causes a RUN from the beginning of the program). This al

lows the second program to share variables with the first. There are

problems with this, however. Some string variable descriptors and

function definitions have their pointers set to areas within the pro

gram text. When this text is replaced by a load, these pointers are no

longer valid, which will lead to errors if the FN or string value is ref

erenced. And if the second program text area is larger than that of

the first, the second program will overwrite some of the first pro

gram's variables, and their values will be lost.

The ability to chain short programs is a holdover from the days

of the 8K PET, for which this BASIC was written, but with the vastly

increased memory of the 64, program chaining should not be neces

sary.

You should also note that SAVE uses this pointer as the address

of the byte after the last byte to SAVE.

47-48 $2F-$30 ARYTAB
Pointer to the Start of the BASIC Array Storage Area

This location points to the address of the end of nonarray variable

storage, and the beginning of array variable storage. The format for

array storage is as follows:

The first two bytes hold the array name. The format and high-

bit patterns are the same as for nonarray variables (see 45, $2D

above), except that there is no equivalent to the function definition.

Next comes a two-byte offset to the start of the next array, low

byte first. Then there is a one-byte value for the number of array di

mensions (e.g., 2 for a two-dimensional array like A(x,y)). That byte

is followed by pairs of bytes which hold the value of each array di

mension+1 (DIMensioning an array always makes space for 0, so

A(0) can and should be used).

Finally come the values of the variables themselves. The format

for these values is the same as with nonarray values, but each value

only takes up the space required; that is, floating point variables use

five bytes each, integers two bytes, and strings descriptors three

bytes each.

Remember that as with nonarray strings, the actual string text is

stored elsewhere, in the area which starts at the location pointed to

in 51-52 ($33-$34).

49-50 $31-$32 STREND
Pointer to End of the BASIC Array Storage Area (+1), and the

Start of Free RAM

This location points to the address of the end of BASIC array storage
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space and the start of free RAM. Since string text starts at the top of

memory and builds downward, this location can also be thought of

as the last possible address of the string storage area. Defining new

variables pushes this pointer upward, toward the last string text.

If a string for which space is being allocated would cross over

this boundary into the array storage area, garbage collection is per

formed, and if there still is not enough room, an OUT OF MEMORY

error occurs. FRE performs garbage collection, and returns the differ

ence between the address pointed to here and the address of the end

of string text storage pointed to by location 51 ($33).

51-52 $33-$34 FRETOP
Pointer to the Bottom of the String Text Storage Area

This pointer marks the current end of the string text area, and the

top of free RAM (strings are built from the top of memory down

ward). Additional string texts are added to the area below the ad

dress pointed to here. After they are added, this pointer is lowered to

point below the newly added string text. The garbage collection rou

tine (which is also called by FRE) readjusts this pointer upward.

While the power-on/reset routines set this pointer to the top of

RAM, the CLR command sets this pointer to the end of BASIC mem

ory, as indicated in location 55 ($37). This allows the user to set

aside an area of BASIC memory that will not be disturbed by the

program, as detailed at location 55 ($37).

53-54 $35-$36 FRESPC
Temporary Pointer for Strings

This is used as a temporary pointer to the most current string added

by the routines which build strings or move them in memory.

55-56 $37-$38 MEMSIZ
Pointer to the Highest Address Used by BASIC

The power-on/reset routine tests each byte of RAM until it comes to

the BASIC ROM, and sets this pointer to the address of the highest

byte of consecutive RAM found (40959, $9FFF).

There are two circumstances under which this pointer may be

changed after power-up to reflect an address lower than the actual

top of consecutive RAM:

1. Users may wish to lower this pointer themselves, in order to

set aside an area of free RAM that will not be disturbed by BASIC.

For example, to set aside a IK area at the top of BASIC, start your

program with the line:

POKE 56, PEEK(56)-4:CLR

The CLR is necessary to insure that the string text will start below

your safe area.
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You may wish to store machine language programs, sprites, or

alternate character sets in such an area. For the latter two applica

tions, however, keep in mind the 16K addressing range limitation of

the VIC-II chip. If you do not assign the VIC-II to a bank other than

the default memory bank of 0-16383 ($0-$3FFF), you must lower the

top of memory below 16383 ($3FFF) if you wish your sprite or char

acter data area to be within its addressing range.

2. When the RS-232 device (number 2) is opened, this pointer

and the pointer to the end of user RAM at 643 are lowered by 512

bytes in order to create two 256-byte buffers, one for input and the

other for output.

Since the contents of these buffers will overwrite any variables

at the top of memory, a CLR command is issued at the time device 2

is opened. Therefore, the RS-232 device should be opened before de

fining any variables, and before setting aside a safe area for machine

language programs or other uses, as described above.

57-58 $39-$3A CURLIN
Current BASIC Line Number

This location contains the line number of the BASIC statement

which is currently being executed, in LSB/MSB format. A value of

255 ($FF) in location 58 ($3A), which translates to a line number of

65280 or above (well over the 63999 limit for a program line), means

that BASIC is currently in immediate mode, rather than RUN mode.

BASIC keywords that are illegal in direct mode check 58 ($3A)

to determine whether or not this is the current mode.

When in RUN mode, this location is updated as each new

BASIC line is fetched for execution. Therefore, a TRACE function

could be added by diverting the vector at 776 ($308), which points

to the routine that executes the next token, to a user-written routine

which prints the line number indicated by this location before jump

ing to the token execution routine. (LISTing the line itself would be

somewhat harder, because LIST uses many Page 0 locations that

would have to be preserved and restored afterwards.)

This line number is used by BREAK and error messages to show

where program execution stopped. The value here is copied to 59

($3B) by STOP, END and the STOP-key BREAK, and copied back by

CONT.

59-60 $3B-$3C OLDLIN
Previous BASIC Line Number

When program execution ends, the last line number executed is

stored here, and restored to location 57 ($39) by CONT.
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61-62 $3D-$3E OLDTXT
Pointer to the Address of the Current BASIC Statement

This location contains the address (not the line number) of the text

of the BASIC statement that is being executed. The value of TXTPTR

(122, $7A), the pointer to the address of the BASIC text character

currently being scanned, is stored here each time a new BASIC line

begins execution.

END, STOP, and the STOP-key BREAK save the value of

TXTPTR here, and CONT restores this value to TXTPTR. CONT will

not continue if 62 ($3E) has been changed to a zero by a LOAD, a

modification to the program text, or by error routines.

63-64 $3F-$40 DATLIN
Current DATA Line Number

This location holds the line number of the current DATA statement

being READ. It should be noted that this information is not used to

determine where the next DATA item is read from (that is the job of

the pointer at 65-66 ($41-$42) below). But if an error concerning the

DATA occurs, this number will be moved to 57 ($39), so that the

error message will show that the error occurred in the line that con

tains the DATA statement, rather than in the line that contains the

READ statement.

65-66 $41-$42 DATPTR
Pointer to the Address of the Current DATA Item

This location points to the address (not the line number) within the

BASIC program text area where DATA is currently being READ.

RESTORE sets this pointer back to the address indicated by the start

of BASIC pointer at location 43 ($2B).

The sample program below shows how the order in which

DATA statements are READ can be changed using this pointer. The

current address of the statement before the DATA statement is stored

in a variable, and then used to change this pointer.

10 A1=PEEK(61)*A2=PEEK(62)

20 DATA THIS DATA WILL BE USED SECOND

30 B1=PEEK(61):B2=PEEK(62)

40 DATA THIS DATA WILL BE USED FIRST

50 C1=PEEK(61):C2=PEEK(62)

60 DATA THIS DATA WILL BE USED THIRD

70 POKE 65,Bl:POKE 66,B2:READ A$:PRINT A$

80 POKE 65,Al:POKE 66,A2:READ A$:PRINT A$

90 POKE 65,Cl:POKE 66,C2:READ A$:PRINT A$
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67-68 $43-$44 INPPTR
Pointer to the Source of GET, READ, or INPUT Information

READ, INPUT, and GET all use this as a pointer to the address of

the source of incoming data, such as DATA statements, or the text

input buffer at 512 ($200).

69-70 $45-$46 VARNAM
Current BASIC Variable Name

The current variable name being searched for is stored here, in the

same two-byte format as in the variable value storage area located at

the address pointed to by 45 ($2D). See that location for an explana

tion of the format.

71-72 $47-$48 VARPNT
Pointer to the Current BASIC Variable Value

This location points to the address of the descriptor of the current

BASIC variable (see location 45 ($2D) for the format of a variable

descriptor). Specifically, it points to the byte just after the two-

character variable name.

During a FN call, this location does not point to the dependent

variable (the A of FN A), so that a real variable of the same name

will not have its value changed by the call.

73-74 $49-$4A FORPNT
Temporary Pointer to the Index Variable Used by FOR

The address of the BASIC variable which is the subject of a FOR/

NEXT loop is first stored here, but is then pushed onto the stack.

That leaves this location free to be used as a work area by such

statements as INPUT, GET, READ, LIST, WAIT, CLOSE, LOAD,

SAVE, RETURN, and GOSUB.

For a description of the stack entries made by FOR, see location

256 ($100).

75-76 $4B-$4C OPPTR
Math Operator Table Displacement

This location is used during the evaluation of mathematical expres

sions to hold the displacement of the current math operator in an

operator table. It is also used as a save area for the pointer to the ad

dress of program text which is currently being read.

77 $4D OPMASK
Mask for Comparison Operation

The expression evaluation routine creates a mask here which lets it

know whether the current comparison operation is a less-than (1),

equals (2), or greater-than comparison.
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78-79 $4E-$4F DEFPNT
Pointer to the Current FN Descriptor

During function definition (DEF FN) this location is used as a pointer

to the descriptor that is created. During function execution (FN) it

points to the FN descriptor in which the evaluation results should be

saved.

80-82 $50-$52 DSCPNT
Temporary Pointer to the Current String Descriptor

The string assignment and handling routines use the first two bytes

as a temporary pointer to the current string descriptor, and the third

to hold the value of the string length.

83 $53 FOUR6
Constant for Garbage Collection

The constant contained here lets the garbage collection routines

know whether a three- or seven-byte string descriptor is being col

lected.

84-85 $54-$56 JMPER
Jump to Function Instruction

The first byte is the 6502 JMP instruction ($4C), followed by the ad

dress of the required function taken from the table at 41042 ($A052).

87-96 $57-$60
BASIC Numeric Work Area

This is a very busy work area, used by many routines.

97-102 $61-$66 FAC1
Floating Point Accumulator #1

The Floating Point Accumulator is central to the execution of any

BASIC mathematical operation. It is used in the conversion of inte

gers to floating point numbers, strings to floating point numbers, and

vice versa. The results of most evaluations are stored in this location.

The internal format of floating point numbers is not particularly

easy to understand (or explain). Generally speaking, the number is

broken into the normalized mantissa, which represents a number be

tween 1 and 1.99999..., and an exponent value, which represents a

power of 2. Multiplying the mantissa by 2 raised to the value of the

exponent gives you the value of the floating point number.

Fortunately, the BASIC interpreter contains many routines for

the manipulation and conversion of floating point numbers, and

these routines can be called by the user. See the entries for locations

3 and 5.

Floating Point Accumulator #1 can be further divided into the

following locations:
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97 $61 FACEXP
Floating Point Accumulator #1: Exponent

This exponent represents the closest power of two to the number,

with 129 added to take care of the sign problem for negative expo

nents. An exponent of 128 is used for the value 0; an exponent of

129 represents 2 to the 0 power, or 1; an exponent of 130 represents

2 to the first power, or 2; 131 is 2 squared, or 4; 132 is 2 cubed, or 8;

and so on.

98-101 $62-$65 FACHO
Floating Point Accumulator #1: Mantissa

The most significant digit can be assumed to be a 1 (remember that

the range of the mantissa is from 1 to 1.99999...) when a floating

point number is stored to a variable. The first bit is used for the sign

of the number, and the other 31 bits of the four-byte mantissa hold

the other significant digits.

The first two bytes (98-99, $62-$63) of this location will hold

the signed integer result of a floating point to integer conversion, in

high-byte, low-byte order.

102 $66 FACSGN
Floating Point Accumulator #1: Sign

A value of 0 here indicates a positive number, while a value of 255

($FF) indicates a negative number.

103 $67 SGNFLG
Number of Terms in a Series Evaluation

This location is used by mathematical formula evaluation routines. It

indicates the number of separate evaluations that must be done to

resolve a complex expression down to a single term.

104 $68 BITS
Floating Point Accumulator #1: Overflow Digit

This location contains the overflow byte. The overflow byte is used

in an intermediate step of conversion from an integer or text string

to a floating point number.

105-110 $69-$6E FAC2
Floating Point Accumulator #2

A second Floating Point Accumulator, used in conjunction with

Floating Point Accumulator #1 in the evaluation of products, sums,

differences—in short, any operation requiring more than one value.

The format of this accumulator is the same as FAC1.
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105 $69 ARGEXP
Floating Point Accumulator #2: Exponent

106-109 $6A-$6D ARGHO
Floating Point Accumulator #2: Mantissa

110 $6E ARGSGN
Floating Point Accumulator #2: Sign

HI $6F ARISGN
Result of a Sign Comparison of Accumulator #1 to Accumulator

#2

Used to indicate whether the two Floating Point Accumulators have

like or unlike signs. A 0 indicates like signs, a 255 ($FF) indicates

unlike signs.

112 $70 FACOV
Low Order Mantissa Byte of Floating Point Accumulator #1 (For

Rounding)

If the mantissa of the floating point number has more significant fig

ures than can be held in four bytes, the least significant figures are

placed here. They are used to extend the accuracy of intermediate

mathematical operations and to round the final figure.

113-114 $71-$72 FBUFPT
Series Evaluation Pointer

This location points to the address of a temporary table of values

built in the free RAM area for the evaluation of formulas. It is also

used for such various purposes as a TI$ work area, string setup

pointer, and work space for the determination of the size of an array.

Although this is labeled a pointer to the tape buffer in the Pro

grammer's Reference Guide, disassembly of the BASIC ROM reveals

no reference to this location for that purpose (see 178, $B2 for point

er to tape buffer).

115-138 $73-$8A CHRGET
Subroutine: Get Next BASIC Text Character

This is actually a machine language subroutine, which at the time of

a BASIC cold start (such as when the power is turned on) is copied

from MOVCHG (58274, $E3A2) in the ROM to this zero page loca

tion.

CHRGET is a crucial routine which BASIC uses to read text

characters, such as the text of the BASIC program which is being in

terpreted. It is placed on zero page to make the routine run faster.

Since it keeps track of the address of the. character being read within
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the routine itself, the routine must be in RAM in order to update

that pointer. The pointer to the address of the byte currently being

read is really the operand of a LDA instruction. When entered from

CHRGET, the routine increments the pointer by modifying the oper

and at TXTPTR (122, $7A), thus allowing the next character to be

read.

Entry at CHRGOT (121, $79) allows the current character to be

read again. The CHRGET routine skips spaces, sets the various flags

of the status register (.P) to indicate whether the character read was

a digit, statement terminator, or other type of character, and returns

with the retrieved character in the Accumulator (.A).

Since CHRGET is used to read every BASIC statement before it

is executed, and since it is in RAM, and therefore changeable, it

makes a handy place to intercept BASIC to add new features and

commands (and in the older PET line, it was the only way to add

such features). Diversion of the CHRGET routine for this purpose is

generally referred to as a wedge.

Since a wedge can greatly slow down execution speed, most of

the time it is set up so that it performs its preprocessing functions

only when in direct or immediate mode. The most well-known ex

ample of such a wedge is the "Universal DOS Support" program

that allows easier communication with the disk drive command

channel.

As this is such a central routine, a disassembly listing is given

below to provide a better understanding of how it works.

; increment low byte of TXTPTR

; if low byte isn't 0, skip next

; increment high byte of TXTPTR

; load byte from where TXTPTR points

; entry here does not update TXTPTR,

; allowing you to read the old byte again

; pointer is really the LDA operand

: TXTPTR+1 points to 512-580 ($200-

; $250) when reading from the input buffer

; in direct mode.

: carry flag set if >ASCII numeral 9

: character is not a numeral—exit

; if it is an ASCII space...

: ignore it and get next character

: prepare to subtract

: ASCII 0-9 are between 48-57 ($30-39)

: prepare to subtract again

if <ASCII 0 (57, $39) then carry is set

carry is clear only for numeral on return

115 $73

117 $75

119 $77

121 $79

122 $7A

124 $7C

126 $7E

128 $80

130 $82

132 $84

133 $85

135 $87

136 $88

138 $8A

CHRGET

TXTPTR

POINTB

EXIT

INC TXTPTR

BNE CHRGOT

INC TXTPTR+1

CHRGOT LDA

$0207

CMP #$3A

BCS EXIT

CMP #$20

BEQ CHRGET

SEC

SBC #$30

SEC

SBC #$D0

RTS

The Accumulator (.A register) holds the character that was read on

exit from the routine. Status register (.P) bits which can be tested for

on exit are:
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Carry Clear if the character was an ASCII digit 0-9; Carry Set, other

wise. Zero Set only if the character was a statement terminator 0 or

an ASCII colon, 58 ($3A). Otherwise, Zero Clear.

One wedge insertion technique is to change CHRGET's INC

$7A to a JMP WEDGE, have your wedge update TXTPTR itself, and

then JSR CHRGOT. Another is to change the CMP #$3A at location

124 ($7C), which I have labeled POINTB, to a JMP WEDGE, do your

wedge processing, and then exit through the ROM version of

POINTB, which is located at 58283 ($E3AB). For more detailed infor

mation about wedges, see Programming the PET/CBM, Raeto Collin

West, pages 365-68.

While the wedge is a good, quick technique for adding new

commands, a much more elegant method exists for accomplishing

this task on the VIC-20 and 64 without slowing BASIC down to the

extent that the wedge does. See the entries for the BASIC RAM vec

tor area at 768-779 ($300-$30B) for more details.

139-143 $8B-$8F RNDX
RND Function Seed Value

This location holds the five-byte floating point value returned by the

RND function. It is initially set to a seed value copied from ROM

(the five bytes are 128, 79, 199, 82, 88—$80, $4F, $C7, $52, $58).

When the function RND(X) is called, the numeric value of X

does not affect the number returned, but its sign does. If X is equal

to 0, RND generates a seed value from chip-level hardware timers. If

X is a positive number, RND(X) will return the next number in an

arithmetic sequence. This sequence continues for such a long time

without repeating itself, and gives such an even distribution of num

bers, that it can be considered random. If X is negative, the seed val

ue is changed to a number that corresponds to a scrambled floating

point representation of the number X itself.

Given a particular seed value, the same pseudorandom series of

numbers will always be returned. This can be handy for debugging

purposes, but not where you wish to have truly random numbers.

The traditional Commodore method of selecting a random seed

is by using the expression RND (-TI), mostly because RND(O) didn't

function correctly on early PETs. While the RND(O) form doesn't

really work right on the 64 either (see location 57495, $E097), the

expression RND(-RND(0)) may produce a more random seed value.

Location Range: 144-255 <$90-$FF)
Kernal Work Storage Area

This is the zero-page storage area for the Kernal. The user should

take into account what effect changing a location here will have on

the operation of Kernal functions before making any such changes.

At power-on, this range of locations is first filled with zeros, and

then initialized from values stored in ROM as needed.
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144 $90 STATUS
Kernal I/O Status Word (ST)

The Kernal routines which open I/O channels or perform input/out

put functions check and update this location. The value here is al

most always the same as that returned to BASIC by use of the re

served variable ST. Note that BASIC syntax will not allow an assign

ment such as ST=4. A table of status codes for cassette and serial

devices follows below.

Cassette:

Bit 2 (Bit Value of 4) = Short Block

Bit 3 (Bit Value of 8) = Long Block

Bit 4 (Bit Value of 16) = Unrecoverable error (Read), mismatch

Bit 5 (Bit Value of 32) = Checksum error

Bit 6 (Bit Value of 64) = End of file

Bit 7 (Bit Value of 128) = End of tape

Serial Devices:

Bit 0 (Bit Value of 1) = Time out (Write)

Bit 1 (Bit Value of 2) = Time out (Read)

Bit 6 (Bit Value of 64) = EOI (End or Identify)

Bit 7 (Bit Value of 128) = Device not present

Probably the most useful bit to test is Bit 6 (end of file). When using

the GET statement to read in individual bytes from a file, the state

ment IF ST AND 64 will be true if you have got to the end of the

file.

For status codes for the RS-232 device, see the entry for location

663 ($297).

145 $91 STKEY
Flag: Was STOP Key Pressed?

This location is updated every 1/60 second during the execution of

the IRQ routine that reads the keyboard and updates the jiffy clock.

The value of the last row of the keyboard matrix is placed here.

That row contains the STOP key, and although this location is used

primarily to detect when that key has been pressed, it can also detect

when any of the other keys in that row of the matrix have been

pressed.

In reading the keyboard matrix, a bit set to 1 means that no key

has been pressed, while a bit reset to 0 indicates that a key is

pressed. Therefore, the following values indicate the keystrokes de

tailed below:

255 $FF

254 $FE

253 $FD

251 $FB

= no key pressed

= 1 key pressed

= <- key pressed

= CTRL key pressed
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247 $F7 = 2 key pressed

239 $EF = space bar pressed

223 $DF = Commodore logo key pressed

191 $BF = Q key pressed

127 $7F = STOP key pressed

VIC owners will notice that the 64's keyboard matrix is very differ

ent from the VIC's. One of the advantages of this difference is that

you can test for the STOP key by following a read of this location

with a BPL instruction, which will cause a branch to occur anytime

that the STOP key is pressed.

146 $92 SVXT
Timing Constant for Tape Reads

This location is used as an adjustable timing constant for tape reads,

which can be changed to allow for the slight speed variations be

tween tapes.

147 $93 VERCK
Flag for Load Routine: 0=LOAD, 1=VERIFY

The same Kernal routine can perform either a LOAD or VERIFY, de

pending on the value stored in the Accumulator (.A) on entry to the

routine. This location is used to determine which operation to per

form.

148 $94 C3PO
Flag: Serial Bus—Output Character Was Buffered

This location is used by the serial output routines to indicate that a

character has been placed in the output buffer and is waiting to be

sent.

149 $95 BSOUR
Buffered Character for Serial Bus

This is the character waiting to be sent. A 255 ($FF) indicates that no

character is waiting for serial output.

150 $96 SYNO
Cassette Block Synchronization Number

151 $97 XSAV
Temporary .X Register Save Area

This .X register save area is used by the routines that get and put an

ASCII character.
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152 $98 LDTND
Number of Open I/O Files/Index to the End of File Tables

The number of currently open I/O files is stored here. The maxi

mum number that can be open at one time is ten. The number

stored here is used as the index to the end of the tables that hold the

file numbers, device numbers, and secondary address numbers (see

locations 601-631, $259-$277, for more information about these

tables).

CLOSE decreases this number and removes entries from the

tables referred to above, while OPEN increases it and adds the

appropriate information to the end of the tables. The Kernal routine

CLALL closes all files by setting this number to 0, which effectively

empties the tables.

153 $99 DFLTN
Default Input Device (Set to 0 for the Keyboard)

The default value of this location is 0, which designates the key

board as the current input device. That value can be changed by the

Kernal routine CHKIN (61966, $F20E), which uses this location to

store the device number of the device whose file it defines as an in

put channel.

BASIC calls CHKIN whenever the command INPUT# or GET#

is executed, but clears the channel after the input operation has been

completed.

154 $9A DFLTO
Default Output (CMD) Device (Set to 3 for the Screen)

The default value of this location is 3, which designates the screen as

the current output device. That value can be changed by the Kernal

routine CHKOUT (62032, $F250), which uses this location to store

the device number of the device whose file it defines as an output

channel.

BASIC calls CHKOUT whenever the command PRINT# or

CMD is executed, but clears the channel after the PRINT# operation

has been completed.

155 $9B PRTY
Tape Character Parity

This location is used to help detect when bits of information have

been lost during transmission of tape data.
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156 $9C DPSW
Flag: Tape Byte Received

This location is used as a flag to indicate whether a complete byte of

tape data has been received, or whether it has only been partially re

ceived.

157 $9D MSGFLG
Flag: Kernal Message Control

This flag is set by the Kernal routine SETMSG (65048, $FE18), and it

controls whether or not Kernal error messages or control messages

will be displayed.

A value of 192 ($C0) here means that both Kernal error and

control messages will be displayed. This will never normally occur

when using BASIC, which prefers its own plain text error messages

over the Kernal's perfunctory I/O ERROR (number). The Kernal

error messages might be used, however, when you are SAVEing or

LOADing with a machine language monitor.

A 128 ($80) means that control messages only will be displayed.

Such will be the case when you are in the BASIC direct or immedi

ate mode. These messages include SEARCHING, SAVING, FOUND,

etc.

A value of 64 means that Kernal error messages only are on. A

0 here suppresses the display of all Kernal messages. This is the val

ue placed here when BASIC enters the program or RUN mode.

158 $9E PTR1
Tape Pass 1 Error Log Index

This location is used in setting up an error log of bytes in which

transmission parity errors occur the first time that the block is re

ceived (each tape block is sent twice to minimize data loss from

transmission error).

159 $9F PTR2
Tape Pass 2 Error Log Correction Index

This location is used in correcting bytes of tape data which were

transmitted incorrectly on the first pass.

160-162 $A0-$A2
Software Jiffy Clock

These three locations are updated 60 times a second, and serve as a

software clock which counts the number of jiffies (sixtieths of a sec

ond) that have elapsed since the computer was turned on.

The value of location 162 ($A2) is increased every jiffy (.01667

second), 161 ($A1) is updated every 256 jiffies (4.2267 seconds), and

160 ($A0) changes every 65536 jiffies (or every 18.2044 minutes).
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After 24 hours, these locations are set back to 0.

The jiffy clock is used by the BASIC reserved variables TI and

TI$. These are not ordinary variables that are stored in the RAM

variable area, but are functions that call the Kernal routines RDTIM

(63197, $F6DD) and SETTIM (63204, $F6E4). Assigning the value of

TI or TI$ to another variable reads these locations, while assigning a

given value to TI$ alters these locations.

To illustrate the relationship between these locations and TI$,

try the following program. The program sets the jiffy clock to 23

hours, 59 minutes. After the program has been running for one

minute, all these locations will be reset to 0.

100 TI$ = '/235900//

110 PRINT TI$,PEEK(160),PEEK(161),PEEK(162)

120 GOTO 110

Since updating is done by the IRQ interrupt that reads the keyboard,

anything which affects the operation of that interrupt routine will

also interfere with this clock. A typical example is tape I/O opera

tions, which steal the IRQ vector for their own use, and restore it af

terwards. Obviously, user routines which redirect the IRQ and do

not send it back to the normal routine will upset software clock op

eration as well.

163-164 $A3-$A4
Temporary Data Storage Area

These locations are used temporarily by the tape and serial I/O

routines.

165 $A5 CNTDN
Cassette Synchronization Character Countdown

Used to count down the number of synchronization characters that

are sent before the actual data in a tape block.

166 $A6 BUFPNT
Count of Characters in Tape I/O Buffer

This location is used to count the number of bytes that have been

read in or written to the tape buffer. Since on a tape write, no data is

sent until the 192 byte buffer is full, you can force output of the

buffer with the statement POKE 166,191.

167 $A7 INBIT
RS-232 Input Bits/Cassette Temporary Storage Area

This location is used to temporarily store each bit of serial data that

is received, as well as for miscellaneous tasks by tape I/O.
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168 $A8 BITCI ,
RS-232 Input Bit Count/Cassette Temporary Storage w

This location is used to count the number of bits of serial data that

has been received. This is necessary so that the serial routines will {__J

know when a full word has been received. It is also used as an error

flag during tape loads. , .

169 $A9 RINONE
RS-232 Flag: Check for Start Bit ^j

This flag is used when checking for a start bit. A 144 ($90) here indi

cates that no start bit was received, while a 0 means that a start bit

was received. ^^

170 $AA RIDATA , }
RS-232 Input Byte Buffer/Cassette Temporary Storage w

Serial routines use this area to reassemble the bits received into a

byte that will be stored in the receiving buffer pointed to by 247 V^

($F7). Tape routines use this as a flag to help determine whether a

received character should be treated as data or as a synchronization >

character. ^

171 $AB RIPRTY
RS-232 Input Parity/Cassette Leader Counter

This location is used to help detect if data was lost during RS-232

transmission, or if a tape leader is completed. O

172-173 $AC-$AD SAL ,
Pointer to the Starting Address of a Load/Screen Scrolling

The pointer to the start of the RAM area to be SAVEd or LOADed at

193 ($C1) is copied here. This pointer is used as a working version, O
to be increased as the data is received or transmitted. At the end of

the operation, the initial value is restored here. Screen management ^ ,

routines temporarily use this as a work pointer. ^

174-175 $AE-$AF EAL
Pointer to Ending Address of Load (End of Program)

This location is set by the Kernal routine SAVE to point to the end

ing address for SAVE, LOAD, or VERIFY.

176-177 $BO-$B1 CMPO
Tape Timing

Location 176 ($B0) is used to determine the value of the adjustable

timing constant at 146 ($92). Location 177 is also used in the timing

of tape reads.

32



183

178-179 $B2$B3 TAPE1
Pointer: Start of Tape Buffer

On power-on, this pointer is set to the address of the cassette buffer

(828, $33C). This pointer must contain an address greater than or

equal to 512 ($200), or an ILLEGAL DEVICE NUMBER error will be

sent when tape I/O is tried.

180 $B4 BITTS
RS-232 Output Bit Count/Cassette Temporary Storage

RS-232 routines use this to count the number of bits transmitted,

and for parity and stop bit manipulation. Tape load routines use this

location to flag when they are ready to receive data bytes.

181 $B5 NXTBIT
RS-232 Next Bit to Send/Tape EOT Flag

This location is used by the RS-232 routines to hold the next bit to

be sent, and by the tape routines to indicate what part of a block the

read routine is currently reading.

182 $B6 RODATA
RS-232 Output Byte Buffer

RS-232 routines use this area to disassemble each byte to be sent

from the transmission buffer pointed to by 249 ($F9).

183 $B7 FNLEN
Length of Current Filename

This location holds the number of characters in the current filename.

Disk filenames may have from 1 to 16 characters, while tape

filenames range from 0 to 187 characters in length.

If the tape name is longer than 16 characters, the excess will be

truncated by the SEARCHING and FOUND messages, but will still

be present on the tape. This means that machine language programs

meant to run in the cassette buffer may be saved as tape filenames.

A disk file is always referred to by a name, whether full or ge

neric (containing the wildcard characters * or ? ). This location will

always be greater than 0 if the current file is a disk file. Tape LOAD,

SAVE, and VERIFY operations do not require that a name be speci

fied, and this location can therefore contain a 0. If this is the case,

the contents of the pointer to the filename at 187 will be irrelevant.

An RS-232 OPEN command may specify a filename of up to

four characters. These characters are copied to locations 659-662

($293-$296), and determine baud rate, word length, and parity.
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184 $B8 LA
Current Logical File Number

This location holds the logical file number of the device currently be

ing used. A maximum of five disk files, and ten files in total, may be

open at any one time.

File numbers range from 1 to 255 (a 0 is used to indicate system

defaults). When printing to a device with a file number greater than

127, an ASCII linefeed character will be sent following each carriage

return, which is useful for devices like serial printers that require

linefeeds in addition to carriage returns.

The BASIC OPEN command calls the Kernal OPEN routine,

which sets the value of this location. In the BASIC statement OPEN

4,8,15, the logical file number corresponds to the first parameter, 4.

185 $B9 SA
Current Secondary Address

This location holds the secondary address of the device currently be

ing used. The range of valid secondary address numbers is 0 through

31 for serial devices, and 0 through 127 for other devices.

Secondary device numbers mean something different to each

device that they are used with. The keyboard and screen devices ig

nore the secondary address completely. But any device which can

have more than one file open at the same time, such as the disk

drive, distinguishes between these files by using the secondary ad

dress. Therefore, it is necessary to specify a secondary address when

opening a disk file. Secondary address numbers 0, 1, and 15-31 have

a special significance to the disk drive, and therefore device numbers

2-14 only should be used as secondary addresses when opening a

disk file.

OPENing a disk file with a secondary address of 15 enables the

user to communicate with the Disk Operating System through that

channel. A LOAD command which specifies a secondary address of

0 (for example, LOAD "AT BASIC", 8,0) results in the program be

ing loaded not to the address specified on the file as the starting ad

dress, but rather to the address pointed to by the start of BASIC

pointer (43, $2B).

A LOAD with a secondary address of 1 (for example, LOAD

"HERE", 8,1) results in the contents of the file being loaded to the

address specified in the file. A disk file that has been LOADed using

a secondary address of 1 can be successfully SAVEd in the same

manner (SAVE "DOS 5.1", 8,1).

LOADs and SAVEs that do not specify a secondary address will

default to a secondary address of 0.

When OPENing a Datassette recorder file, a secondary address

of 0 signifies that the file will be read, while a secondary address of

1 signifies that the file will be written to. A value of 2 can be added
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to indicate that an End of Tape marker should be written as well.

This marker tells the Datassette not to search past it for any more

files on the tape, though more files can be written to the tape if de

sired.

As with the disk drive, the LOAD and SAVE commands use

secondary addresses of 0 and 1 respectively to indicate whether the

operation should be relocating or nonrelocating.

When the 1515 or 1525 Printer is opened with a secondary ad

dress of 7, the uppercase/lowercase character set is used. If it is

opened with a secondary address of 0, or without a secondary ad

dress, the uppercase/graphics character set will be used.

186 $BA FA
Current Device Number

This location holds the number of the device that is currently being

used. Device number assignments are as follows:

0=Keyboard; 1=Datassette Recorder; 2=RS-232/User Port;

3 = Screen; 4-5=Printer, 8-11= Disk.

187-188 $BB-$BC FNADR
Pointer: Current Filename

This location holds a pointer to the address of the current filename.

If an operation which OPENs a tape file does not specify a filename,

this pointer is not used.

When a disk filename contains a shifted space character, the re

mainder of the name will appear outside the quotes in the directory,

and may be used for comments. For example, if you SAVE

"ML[shifted space]SYS 828", the directory entry will read "ML"SYS

828. You may reference the program either by the portion of the

name that appears within quotes, or by the full name, including the

shifted space. A program appearing later in the directory as

"ML"SYS 900 would not be found just by reference to "ML", how

ever.

A filename of up to four characters may be used when opening

the RS-232 device. These four characters will be copied to 659-662

($293-$296), where they are used to control such parameters as baud

rate, parity, and word length.

189 $BD ROPRTY
RS-232 Output Parity/Cassette Temporary Storage

This location is used by the RS-232 routines as an output parity

work byte, and by the tape as temporary storage for the current

character being read or sent.

35



190

190 $BE FSBLK
Cassette Read/Write Block Count

Used by the tape routines to count the number of copies of a data

block remaining to be read or written.

191 $BF MYCH
Tape Input Byte Buffer

This is used by the tape routines as a work area in which incoming

characters are assembled.

192 $C0 CAS1
Tape Motor Interlock

This location is maintained by the IRQ interrupt routine that scans

the keyboard. Whenever a button is pressed on the recorder, this lo

cation is checked. If it contains a 0, the motor is turned on by setting

Bit 5 of location 1 to 0. When the button is let up, the tape motor is

turned off, and this location is set to 0.

Since the interrupt routine is executed 60 times per second, you

will not be able to keep the motor bit set to keep the motor on if no

buttons are pushed. Likewise, if you try to turn the motor off when

a button is pressed and this location is set to 0, the interrupt routine

will turn it back on.

To control the motor via software, you must set this location to

a nonzero value after one of the buttons on the recorder has been

pressed.

193-194 $C1-$C2 STAL
I/O Start Address

This location points to the beginning address of the area in RAM

which is currently being LOADed or SAVEd. For tape I/O, it will

point to the cassette buffer, which is used for the first block, while

the rest of the I/O operation uses the area of RAM pointed to by lo

cation 195 ($C3).

195-196 $C3-$C4 MEMUSS
Tape Load Temporary Addresses

During a tape LOAD or SAVE, the first block, which contains the

header, is loaded to or from the cassette buffer, and the rest of the

data is LOADed or SAVEd directly to or from RAM. This location

points to the beginning address of the area of RAM to be used for

the blocks of data that come after the initial header.

197 $C5 LSTX
Matrix Coordinate of Last Key Pressed, 64=None Pressed

During every normal IRQ interrupt this location is set with the value
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of the last keypress, to be used in keyboard debouncing. The Oper

ating System can check if the current keypress is the same as the last

one, and will not repeat the character if it is.

The value returned here is based on the keyboard matrix values

as set forth in the explanation of location 56320 ($DC00). The values

returned for each key pressed are shown at the entry for location

203 ($CB).

198 $C6 NDX
Number of Characters in Keyboard Buffer (Queue)

The value here indicates the number of characters waiting in the

keyboard buffer at 631 ($277). The maximum number of characters

in the keyboard buffer at any one time is determined by the value in

location 649 ($289), which defaults to 10.

If INPUT or GET is executed while there are already characters

in the buffer, those characters will be read as part of the data stream.

You can prevent this by POKEing a 0 to this location before those

operations, which will always cause any character in the buffer to be

ignored. This technique can be handy when using the joystick in

Controller Port #1, which sometimes causes false keypresses to be

registered, placing unwanted characters in the keyboard buffer.

Not only is this location handy for taking unwanted characters

out of the keyboard buffer, but it can also be used to put desired

characters into the buffer, and thus to program the keyboard buffer.

This technique (dynamic keyboard) allows you to simulate keyboard

input in direct mode from a program.

The dynamic keyboard technique is an extremely useful one, as

it enables you to add, delete, or modify program lines while the pro

gram is running. The basic scheme is to POKE the PETASCII charac

ter values that you wish to be printed (including cursor control char

acters and carriage returns) into the buffer, and POKE this location

with the number of characters in the buffer. Then, when an END

statement is executed, the characters in the buffer will be printed,

and entered by the carriage returns.

This technique can help with the problem of trying to use data

separator and terminator characters with INPUT statements. If you

try to INPUT a string that has a comma or colon, the INPUT will

read only up to that character and issue an EXTRA IGNORED error

message. You can avoid this by entering the input string in quotes,

but this places on the user the burden of remembering the quote

marks. One solution is to use the statement

POKE 198,3: POKE 631,34: POKE 632,34: POKE 633,20

before the input. This will force two quote marks and a delete into

the buffer. The first quote mark allows the comma or colon to be IN

PUT, the second is used to get the editor out of quote mode, and the

delete removes that second quote.
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For more specific information and programming examples, see

the description of location 631 ($277), the keyboard buffer.

199 $C7 RVS
Flag: Print Reverse Characters? 0=No

When the [CTRL] [RVS-ON] characters are printed (CHR$(18)), this

flag is set to 18 ($12), and the print routines will add 128 ($80) to

the screen code of each character which is printed, so that the char

acter will appear on the screen with its colors inverted.

POKEing this location directly with a nonzero number will

achieve the same results. You should remember, however, that the

contents of this location are returned to 0 not only upon entry of a

[CTRL] [RVS-OFF] character (CHR$(146)), but also at every carriage

return. When this happens, characters printed thereafter appear with

the normal combination of colors.

200 $C8 INDX
Pointer: End of Logical Line for Input

This pointer indicates the column number of the last nonblank char

acter on the logical line that is to be input. Since a logical line can be

up to 80 characters long, this number can range from 0-79.

201-202 $C9-$CA LXSP
Cursor X,Y Position at Start of Input

These locations keep track of the logical line that the cursor is on,

and its column position on that logical line (in line, column format).

Each logical line may contain one or two 40-column physical

lines. Thus there may be as many as 25 logical lines, or as few as 13

at any one time. Therefore, the logical line number might be any

where from 1-25. Depending on the length of the logical line, the

cursor column may be from 1-40 or 1-80.

For a more detailed explanation of logical lines, see the descrip

tion of the screen line link table, 217 ($D9).

203 $CB SFDX
Matrix Coordinate of Current Key Pressed

The keyscan interrupt routine uses this location to indicate which

key is currently being pressed. The value here is then used as an in

dex into the appropriate keyboard table to determine which charac

ter to print when a key is struck.

The correspondence between the key pressed and the number

stored here is as follows:

0 =INSERT/DELETE 4= fl

1= RETURN 5= f3

2= CURSOR RIGHT 6= f5
3= f7 7= CURSOR DOWN
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8= 3

9= W

10= A

11= 4

12= Z

13= S

14= E

15= NOT USED (WOULD BE LEFT

SHIFT)

16=5

17= R

18= D

19= 6

20= C

21= F

22= T

23= X

24= 7

25= Y

26= G

27= 8

28= B

29= H

30= U

31= V

32= 9

33=1

34= J

35= 0

36= M

37= K

38= O

39= N

40= +

41= P

42= L

43= -

44= .

45= :

46= @

47= ,

48= LIRA (BRITISH POUND SIGN)

49= *

50= ;

51= CLEAR/HOME

52= NOT USED (WOULD BE RIGHT

SHIFT)

53

54= UP ARROW (EXPONENTIATION

SIGN)

55= /

56= 1

57= LEFT ARROW

58= NOT USED (WOULD BE

CONTROL)

59= 2

60= SPACE BAR

61= NOT USED (WOULD BE

COMMODORE LOGO)

62= Q

63= RUN/STOP

64= NO KEY PRESSED

The RESTORE key is not accounted for, because it is not part of the

normal keyboard matrix. Instead, it is connected directly to the

microprocessor NMI line, and causes an NMI interrupt whenever it

is pressed.

204 $CC BLNSW
Cursor Blink Enable: 0=Flash Cursor

When this flag is set to a nonzero value, it indicates to the routine

that normally flashes the cursor not to do so. The cursor blink is

turned off when there are characters in the keyboard buffer, or when

the program is running.

You can use this location to turn the cursor on during a program

(for a series of GET operations, for example, to show the user that

input is expected) by using the statement POKE 204,0.

205 $CD BLNCT
Timer: Countdown to Blink Cursor

The interrupt routine that blinks the cursor uses this location to tell

when it's time for a blink. First the number 20 is put here, and every

jiffy (1/60 second) the value here is decreased by one, until it

39



206

reaches zero. Then the cursor is blinked, the number 20 is put back

here, and the cycle starts all over again. Thus, under normal circum

stances, the cursor blinks three times per second.

206 $CE GDBLN
Character under Cursor

The cursor is formed by printing the inverse of the character that oc

cupies the cursor position. If that character is the letter A, for exam

ple, the flashing cursor merely alternates between printing an A and

a reverse-A. This location keeps track of the normal screen code of

the character that is located at the cursor position, so that it may be

restored when the cursor moves on.

207 $CF BLNON
Flag: Was Last Cursor Blink on or off?

This location keeps track of whether, during the current cursor blink,

the character under the cursor was reversed, or was restored to nor

mal. This location will contain a 0 if the character is reversed, and a

1 if the character is restored to its nonreversed status.

208 $D0 CRSW
Flag: Input from Keyboard or Screen

This flag is used by the Kernal CHRIN (61783, $F157) routine to in

dicate whether input is available from the screen (3), or whether a

new line should be obtained from the keyboard (0).

209-210 $D1-$D2 PNT
Pointer to the Address of the Current Screen Line

This location points to the address in screen RAM of the first column

of the logical line upon which the cursor is currently positioned.

211 $D3 PNTR
Cursor Column on Current Line

The number contained here is the cursor column position within the

logical line pointed to by 209 ($D1). Since a logical line can contain

up to two physical lines, this value may be from 0 to 79 (the number

here is the value returned by the POS function).

212 $D4 CITSW
Flag: Editor in Quote Mode? 0=No

A nonzero value in this location indicates that the editor is in quote

mode. Quote mode is toggled every time that you type in a quota

tion mark on a given line—the first quote mark turns it on, the sec

ond turns it off, the third turns it back on, etc.

If the editor is in this mode when a cursor control character or
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other nonprinting character is entered, a printed equivalent will ap

pear on the screen instead of the cursor movement or other control

operation taking place. Instead, that action is deferred until the string

is sent to the screen by a PRINT statement, at which time the cursor

movement or other control operation will take place.

The exception to this rule is the DELETE key, which will func

tion normally within quote mode. The only way to print a character

which is equivalent to the DELETE key is by entering insert mode

(see location 216, $D8). Quote mode may be exited by printing a

closing quote character, or by hitting the RETURN or SHIFT-

RETURN keys.

Sometimes, it would be handy to be able to escape from quote

mode or insert mode without skipping to a new line. The machine

language program below hooks into the keyscan interrupt routine,

and allows you to escape quote mode by changing this flag to 0

when you press the fl key:

10 FOR 1=850 TO I+41:READ A:POKE I,A:NEXT

20 PRINTCHR$(147)"PRESS Fl KEY TO ESCAPE QUOTE MOD
E"

30 PRINT"TO RESTART AFTER RESTORE ONLY, SYS 850":S

YS 850:NEW

40 DATA{2 SPACES}173 , 143 , 2 , 141 , 46 , 3 , 17
3 , 144 , 2 , 141

50 DATA 47 , 3 , 120 , 169 , 107 , 141 , 143 , 2 ,

169 , 3

60 DATA 141 , 144 , 2 , 88 , 96 , 165 , 203 , 201

{SPACE}, 4 , 208

70 DATA 8 , 169 , 0 , 133 , 212 , 133 , 216 , 133

{SPACE}, 199 , 108, 46, 3

213 $D5 LNMX
Maximum Length of Physical Screen Line

The line editor uses this location when the end of a line has been

reached to determine whether another physical line can be added to

the current logical line, or if a new logical line must be started.

214 $D6 TBLX
Current Cursor Physical Line Number

This location contains the current physical screen line position of the

cursor (0-24). It can be used in a fashion to move the cursor vertical

ly, by POKEing the target screen line (1-25) minus 1 here, followed

by a PRINT command. For example,

POKE 214,9:PRINT:PRINT "WE'RE ON LINE ELEVEN"

prints the message on line 11. The first PRINT statement allows the

system to update the other screen editor variables so that they will
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also show the new line. The cursor can also be set or read using the

Kernal PLOT routine (58634, $E50A) as explained in the entry for

locations 780-783 ($30C-30F).

215 $D7
Temporary Storage Area for ASCII Value of Last Character

Printed

The ASCII value of the last character printed to the screen is held

here temporarily.

216 $D8 INSRT
Flag: Insert Mode (Any Number Greater Than 0 Is the Number of

Inserts)

When the INST key is pressed, the screen editor shifts the line to the

right, allocates another physical line to the logical line if necessary

(and possible), updates the screen line length in 213 ($D5), and ad

justs the screen line link table at 217 ($D9). This location is used to

keep track of the number of spaces that has been opened up in this

way.

Until the spaces that have been opened up are filled, the editor

acts as if in quote mode (see location 212 ($D4), the quote mode

flag). This means that cursor control characters that are normally

nonprinting will leave a printed equivalent on the screen when en

tered, instead of having their normal effect on cursor movement, etc.

The only difference between insert and quote mode is that the DE

LETE key will leave a printed equivalent in insert mode, while the

INST key will insert spaces as normal.

217-242 $D9-$F2 LDTB1
Screen Line Link Table/Editor Temporary Storage

This table contains 25 entries, one for each row of the screen dis

play. Each entry has two functions. Bits 0-3 indicate on which of the

four pages of screen memory the first byte of memory for that row is

located. This is used in calculating the pointer to the starting address

of a screen line at 209 ($D1).

While earlier PETs used one table for the low bytes of screen

rows and another for the high bytes, this is not possible on the 64,

where screen memory is not fixed in any one spot. Therefore, the

Operating System uses a table of low bytes at 60656 ($ECF0), but

calculates the high byte by adding the value of the starting page of

screen memory held in 648 ($288) to the displacement page held

here.

The other function of this table is to establish the makeup of

logical lines on the screen. While each screen line is only 40 charac

ters long, BASIC allows the entry of program lines that contain up to

80 characters. Therefore, some method must be used to determine
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which pairs of physical lines are linked into a longer logical line, so

that this longer logical line may be edited as a unit.

The high bit of each byte here is used as a flag by the screen

editor. That bit is set (leaving the value of the byte over 128, $80)

when a line is the first or only physical line in a logical line. The

high bit is reset to 0 only when a line is the second half of a logical

line.

243-244 $F3-$F4 USER
Pointer to the Address of the Current Screen Color RAM Location

This pointer is synchronized with the pointer to the address of the

first byte of screen RAM for the current line kept in location 209

($D1). It holds the address of the first byte of color RAM for the cor

responding screen line.

245-246 $F5-$F6 KEYTAB
Vector: Keyboard Decode Table

KEYTAB points to the address of the keyboard matrix lookup table

currently being used. Although there are only 64 keys on the key

board matrix, each key can be used to print up to four different char

acters, depending on whether it is struck by itself or in combination

with the SHIFT, CONTROL, or Commodore logo keys.

The tables pointed to by this address hold the ASCII value of

each of the 64 keys for one of these possible combinations of

keypresses. When it comes time to print the character, the table that

is used determines which character is printed.

The addresses of the four tables are:

60289 ($EB81) = default uppercase/graphics characters (unshifted)

60354 ($EBC2) = shifted characters

60419 ($EC03) = Commodore logo key characters

60536 ($EC78) = CONTROL characters

The concept of the keyboard matrix tables should not be con

fused with changing the character sets from uppercase/graphics to

upper/lowercase. The former involves determining what character is

to be placed into screen memory, while the latter involves deter

mining which character data table is to be used to decode the screen

memory into individual dots for the display of characters on the

screen. That character base is determined by location 53272 ($D018)

of the VIC-II chip.

247-248 $F7-$F8 RIBUF
Pointer: RS-232 Input Buffer

When device number 2 (the RS-232 channel) is opened, two buffers

of 256 bytes each are created at the top of memory. This location

points to the address of the one which is used to store characters as
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they are received. A BASIC program should always OPEN device 2

before assigning any variables to avoid the consequences of over

writing variables which were previously located at the top of mem

ory, as BASIC executes a CLR after opening this device.

249-250 $F9-$FA ROBUF
Pointer: RS-232 Output Buffer

This location points to the address of the 256-byte output buffer

which is used for transmitting data to RS-232 devices (device num

ber 2).

251-254 $FB-$FE FREKZP
Four Free Bytes of Zero Page for User Programs

These locations were specifically set aside for user-written ML

routines that require zero-page addressing. While other zero-page lo

cations can be used on a noninterference basis, it is guaranteed that

BASIC will not alter these locations.

255 $FF BASZPT
BASIC Temporary Data for Floating Point to ASCII Conversion

This location is used for temporary storage in the process of convert

ing floating point numbers to ASCII characters.
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256-318

Page 1

256-511 $100-$ IFF
Microprocessor Stack Area

Locations 256-511 are reserved for the 6510 microprocessor hard

ware stack. The organization of this temporary storage area has often

been compared to that of a push-down stack of trays at a cafeteria.

The first number placed on the stack goes to the bottom, and subse

quent entries are placed on top of it. When you pull a number off

the stack, you come up with the last number that was pushed on

(such a stack is called a Last In, First Out, or LIFO stack).

The stack is controlled by one of the microprocessor registers

called the Stack Pointer, which keeps track of the last stack location

used. The first number placed on the stack goes to location 511

($1FF), and subsequent entries are built downward toward 256

($100). If more than 256 numbers are pushed onto the stack, the

Stack Pointer will start counting from 0 again, and an overflow error

will result. Likewise, if you try to pull more items off the stack than

have been pushed on, an underflow error will result. Most often,

such errors will cause the system to go haywire, and nothing will

operate until you turn the power off and on again.

The stack is used by the system to keep track of the return ad

dresses of machine language subroutines and interrupt calls and to

save the contents of internal registers.The stack can also be used by

the programmer for temporary storage. BASIC and the Kernal make

heavy use of the stack.

Microsoft BASIC uses part of the stack for a temporary work

area. Therefore, the stack may be broken down into the following

subregions:

256-266 $100-$10A
Work Area for Floating Point to String Conversions

Used in the conversion of numbers to the equivalent ASCII digits,

and in scanning strings.

256-318 $100-$13E BAD
Tape Input Error Log

Each tape block is saved twice consecutively, in order to minimize

loss of data from transmission errors. These 62 bytes serve as indices
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of which bytes in the tape block were not received correctly during

the first transmission, so that corrrections might be made on the sec- O
ond pass.

319-511 $13F-$1FF w
This area is used exclusively for the microprocessor stack. Some

BASIC commands, such as FOR-NEXT loops require many stack en- i^J

tries at a time. Therefore, BASIC frequently checks the stack before

pushing entries on, and returns an OUT OF MEMORY error if an

operation would result in less than 62 bytes of available stack ^
memory.

Each FOR statement causes 18 bytes to be pushed onto the m

stack, which come off in the following order:

First comes a one-byte constant of 129 ($81). Next is a two-byte

pointer to the address of the subject variable (the X of FOR X=l to ^J

10). This is followed by the five-byte floating point representation of

the STEP value, the one-byte sign of the STEP, and the five-byte

floating point representation of the TO value. Finally comes the two- \S
byte line number of the line to which the program returns after a

NEXT, and the two-byte address of the next character to read in that « j

line after the FOR statement.

Each GOSUB call places five bytes on the stack. The first byte to

come off is a one-byte constant of 141 ($8D). The next two bytes K^J

contain the line number of the statement to which the program will

RETURN after the subroutine ends. And the final two bytes are a ,

pointer to the address of the BASIC program text for that statement ^~s
to which the program RETURNS.

DEF also leaves a five-byte entry on the stack. It is the same as it

that described for GOSUB, except that instead of a constant byte of

141, the first number is a dummy byte, whose value has no signifi

cance. {J
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o 512-600

n

n Pages 2 and 3
n BASIC and Kernal
o Working Storage

o

o
This area is used to store important information for the Operating

f""*1 System and BASIC. It contains vectors to certain BASIC routines as
well as Operating System Kernal routines. Registers for RS-232 serial

/—^ I/O are located here. Buffer space is allocated in this area for tape

I/O, BASIC text input, and the keyboard queue. In addition, there

are a number of Operating System variables and pointers here which

Oi the programmer can utilize.

_ 512-600 $200-$258 BUF
O BASIC Line Editor Input Buffer

When you are in the BASIC immediate mode, and type in a line of

(~) characters, those characters are stored here. BASIC then scans the

string of characters, converts the text to tokenized BASIC program

format, and either stores it or executes the line, depending on

<> whether or not it started with a line number.

This same area is also used to store data which is received via

^ the INPUT and GET commands. This explains why these commands

are illegal in immediate mode—they must use the same buffer space

that is required by the immediate mode statement itself.

O It is interesting to note that this buffer is 89 bytes long. The

screen editor will allow a maximum of only 80 characters in a pro-

_^ gram line, with one extra byte required for a 0 character, marking

'^ the end of the line. This presumably is a carry-over from the VIC,
which allows a line length of up to 88 characters. The last eight

^ bytes of this buffer are therefore normally not used, and can be con

sidered free space for the programmer to use as he or she sees fit.

O Location Range: 601-630 ($259-$276)
Tables for File Numbers, Device Numbers, and Secondary

^ Addresses

All three of the tables here have room for ten one-byte entries, each

of which represents an active Input/Output file. When an I/O file is

f) opened, its logical file number is put into the table at 601 ($259), the
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device number of the I/O device is put into the table at 611 ($263),

and its secondary address is put into the table at 621 ($26D). LJ
The entry for any particular I/O file will occupy the same posi

tion in each of the three tables. That is, if logical file number 2 is the

third entry in the file number table, its secondary address will be the ^
third entry in the secondary address table, and its corresponding de

vice number will occupy the third spot in the device number table. {^j

Every time a device is OPENed, its information is added as the

last entry in each table, and the value at location 152 ($98) is in

creased by one, indicating that there is one more active I/O file. ^
When a device is CLOSEd, the value at location 152 is decreased by

one, and all entries that occupy a position in the tables that is higher , »

than that of the closed device are moved down one position, thus

eliminating the entry for that device. The Kernal CLALL routine

(62255, $F32F) simply zeros location 152, which has the effect of ^J

emptying these tables.

601-610 $259-$262 LAT U
Kernal Table of Active Logical File Numbers

611-620 $263-$26C FAT °
Kernal Table of Device Numbers for Each Logical File

621-630 $26D-$276 SAT ^
Kernal Table of Secondary Addresses for Each Logical File ,

631-640 $277-$280 KEYD
Keyboard Buffer (Queue) {j

This buffer, sometimes also referred to as the keyboard queue, holds

the ASCII values of the characters entered from the keyboard. The ,

interrupt routine which scans the keyboard deposits a character here ^
each time a key is pressed. When BASIC sees that there are charac

ters waiting, it removes and prints them, one by one, in the order in \^j

which they were entered.

This kind of a buffer is known as FIFO, for First In, First Out.

The buffer will hold up to ten characters, allowing you to type faster ^
than the computer prints characters, without losing characters. The

maximum number of characters this buffer can hold at one time is / i

ten (as determined by the value at 649, $289). Characters entered af- Vw/
ter the buffer is full will be ignored.

The commands GET and INPUT retrieve characters from this ^J

buffer. If one of these is executed while there are already characters

waiting in the buffer, those characters will be fetched as if they were

part of the data being input. To prevent this from happening, you ^
can clear the buffer by POKEing a 0 into location 198 ($C6), which

holds the number of characters that are waiting in the buffer. i>
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_ One of the most interesting and useful techniques for program-

0 ming Commodore computers is to have a program simulate direct
entry of commands from the keyboard. This dynamic keyboard trick

^ is achieved by first POKEing PETASCII characters, usually cursor

movement characters and carriage returns, into the buffer, and set

ting location 198 ($C6) to show how many characters are waiting in

O the buffer.
Next, you clear the screen, and PRINT the statements that you

j*^ wish to have executed on the screen, carefully positioning them so

that the first statement to be entered is on the fourth line of the

screen.

(**) You then home the cursor and execute an END statement. This

causes the keyboard buffer to be read, and the carriage returns to be

executed, thus entering the printed lines as if they had been typed in

^ immediate or direct mode. The program can be continued by includ
ing a GOTO statement in the last line entered.

/-* Many interesting effects can be achieved using this method. Ex

amples of a few of these are included below. For example, program

lines can be added, modified, or deleted, while the program is run-

f*) ning. The following example shows how this is done:

10 REM THIS LINE WILL BE DELETED

f-\ 20 REM A NEW LINE 30 WILL BE CREATED

40 PRINT CHR$(147):PRINT:PRINT

50 PRINT "80 LIST":PRINT"30 REM THIS LINE WASN'T H

(**) ERE BEFORE"

60 PRINT "10":PRINT "GOTO 80"CHR$(19)

70 FOR 1=631 TO 634:POKE I,13:NEXT:POKE 198,4:END

(~*) 80 REM THIS LINE WILL BE REPLACED

You can use this technique to enter numbered DATA statements

^ automatically, using values in memory. These statements become a

permanent part of the program.

Another interesting application is taking ASCII program lines

O from a tape data file, or sequential disk file, and having them en
tered automatically. This can be used for merging programs, or for

*-. transferring programs between computers with a modem and a ter

minal program. To create the ASCII program file, you use CMD to

direct a LISTing to the desired device as follows:

^ For tape: OPEN 1,1,1,"ASCH":CMD 1:LIST
After the listing has ended: PRINT #1:CLOSE 1

CS For disk: OPEN 8,8,8,"ASCII,S,W":CMD 8:LIST
After the listing has ended: PRINT#8:CLOSE 8

fs, This file can then be uploaded using a modem and appropriate ter

minal software, entered by itself or merged with another program by

using the following program. Be sure to save this program before

O you run it, because it will erase itself when it is done.
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60000 OPEN 1,8,8,"ASCII"

60010 POKE 152,1:B=0:GOSUB 60170 LJ
60020 GET #1,A$:IF A$=IMITHEN60020

60030 IF ST AND 64 THEN 60120

60040 IF A$=CHR$(13)AND B=0THEN 60020 W

60050 PRINT A$;:B=1:IF A$=CHR$(34)THEN POKE 212,0

60060 IF A$<>CHR$(13) THEN 60020 , >

60070 PRINT CHR$(5);"GOTO 60010";CHR$(5):PRINT:PRI ^
NT:POKE 198,0

60080 PRINT "RETURN=KEEP LINE{4 SPACES}S=SKIP LINE < \
":B=0 ^

60090 GET A$:IF A$=IMITHEN 60090

60100 IF A$=MS" THEN 60010 . j

60110 GOTO 60180

60120 PRINT "END OF FILE—HIT RETURN TO FINISH MER

GE" ^J

60130 IF PEEK(197)<>1THEN60130
60140 A=60000

60150 GOSUB 60170:FOR I=A TO A+60 STEP10:PRINTI:NE LJ
XT

60160 PRINT "A="I":GOTO 60150":GOTO 60180

60170 PRINT CHR$(147):PRINT:PRINT:RETURN ^J
60180 FOR* I=631TO640:POKEI,13:NEXT:POKE198,10:PRIN

TCHR$(19);:END

If you wish to merge additional programs at the same time, when it

indicates that the file has ended, press the STOP key rather than , ,

RETURN, enter the name of the new file in line 60000, and RUN ^
60000.

641-642 $281-$282 MEMSTR U
Pointer: O.S. Start of Memory

When the power is first turned on, or a cold start RESET is per-

formed, the Kernal routine RAMTAS (64848, $FD50) sets this loca

tion to point to address 2048 ($800). This indicate that this is the \^J

starting address of user RAM. BASIC uses this location to set its own

start of memory pointer at location 43 ($2B), and thereafter uses only

its own pointer. ^
The Kernal routine MEMBOT (65076, $FE34) may be used to

read or set this pointer, or these locations may be directly PEEKed or < j

POKEd from BASIC.

643-644 $282-$284 MEMSIZ U
Pointer: O.S. End of Memory

When the power is first turned on, or a cold start RESET is per- t\

formed, the Kernal routine RAMTAS (64848,$FD50) performs a non-

destructive test of RAM from 1024 ($400) up, stopping when the test
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fails, indicating the presence of ROM. This will normally occur at

40960 ($A000), the location of the BASIC ROM. The top of user

RAM pointer is then set to point to that first ROM location.

After BASIC has been started, the system will alter this location

only when an RS-232 channel (device number 2) is OPENed or

CLOSEd. As 512 bytes of memory are required for the RS-232 trans

mission and reception buffers, this pointer, as well as the end of

BASIC pointer at 55 ($37), is lowered to create room for those buff

ers when the device is opened. CLOSing the device resets these

pointers.

The Kernal routine MEMTOP (65061, $FE25) may be used to

read or set this pointer.

645 $285 TIMOUT
Flag: Kernal Variable for IEEE Time-Out

This location is used only with the external IEEE interface card

(which was not yet available from Commodore at the time of writ

ing). For more information, see the entry for the Kernal SETTMO

routine at 65057 ($FE21).

646 $286 COLOR
Current Foreground Color for Text

The process of PRINTing a character to the screen consists of both

placing the screen code value for the character in screen memory

and placing a foreground color value in the corresponding location

in color RAM. Whenever a character is PRINTed, the Operating Sys

tem fetches the value to be put in color RAM from this location.

The foreground color may be changed in a number of ways.

Pressing the CTRL or Commodore logo key and numbers 1-8 at the

same time will change the value stored here, and thus the color be

ing printed. PRINTing the PETASCII equivalent character with the

CHR$ command will have the same effect. But probably the easiest

method is to POKE the color value directly to this location. The table

below lists the possible colors that may be produced, and shows

how to produce them using all three methods.

POKE

COLOR*

0

1

2

3

4

5

6

7

8

COLOR

BLACK

WHITE

RED

CYAN

PURPLE

GREEN

BLUE

YELLOW

ORANGE

CHR$

144

5

28

159

156

30

31

158

129

KEYS TO PRESS

CTRL-1

CTRL-2

CTRL-3

CTRL-4

CTRL-5

CTRL-6

CTRL-7

CTRL-8

Loeo-1
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POKE

COLOR#

9

10

11

12

13

14

15

COLOR

BROWN

LTRED

DARK GRAY

MED GRAY

LT GREEN

LT BLUE

LTGRAY

CHR$

149

150

151

152

153

154

155

KEYS TO PRESS

Logo-2

Logo-3

Logo-4

Logo-5

Logo-6

Logo-7

Logo-8

647 $287 GDCOL
Color of Character under Cursor

This location is used to keep track of the original color code of the

character stored at the present cursor location. Since the blinking

cursor uses the current foreground color at 646 ($286), the original

value must be stored here so that if the cursor moves on without

changing that character, its color code can be restored to its original

value.

648 $288 HIBASE
Top Page of Screen Memory

This location contains the value used by the Operating System

routines that print to the screen as the base address for screen RAM.

The top of screen memory can be found by multiplying this location

by 256. The default value for screen RAM is set on power-up to lo

cation 1024 ($400), and this location therefore usually contains a 4.

Screen display memory on the Commodore 64 can be moved to

start on any IK boundary (location evenly divisible by 1024). This is

done by manipulating the VIC-II memory control register at 53272,

($D018), and the VIC chip memory bank select at location 56576

($DD00).

It is important to note, however, that while any area may be

displayed, the Operating System will look here to find out where it

should PRINT characters. Therefore, if you change the screen loca

tion by altering the contents of one of the two addresses listed

above, the Operating System will still not know where to PRINT

characters unless you also change this address as well. The result

will be that characters entered from the keyboard or PRINTed will

not appear on the screen.

Examples of how to properly relocate the screen can be found at

the entries for location 53272 ($D018) and 43 ($2B).

Since the PRINT command in essence just POKEs a lot of values

to screen and color memory, by changing this pointer you can print

a string of characters to memory locations other than screen RAM.

For example, you could PRINT a sprite shape to memory without
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having to READ a lot of DATA statements. The program below

O PRINTs different sprite shapes into the sprite data area:

^ 10 SP=53248:POKESP,170:POKESP+1,125:POKESP+21,1:PO

^ KE 2040,13:PRINT CHR$(147)
20 A$="THIS TEXT WILL BE PRINTED TO THE SPRITE SHA

rm. PE DATA AREA AND DISPLAYED"

' ' 30 GOSUB 100
40 A$="THIS IS SOME DIFFERENT TEXT TO BE PRINTED T

f^ O THE SPRITE SHAPE AREA"

50 GOSUB 100

60 COUNT=COUNT+1:IF COUNT<15 THEN 20

f*\ 70 END

100 POKE 648,3:PRINTCHR$(19);CHR$(17);SPC(24);A$;:

POKE 648,4:RETURN

ri
Since PRINTing also changes color memory, you can change the

^ pointer to print the characters harmlessly to ROM, while changing a

*> lot of screen RAM at one time, as the following program demon

strates:

O 10 D$=CHR$(94):F0R 1=1 TO 4:D$=D$+D$:NEXT
20 PRINT CHR$(147);:FOR 1=1 TO 7:PRINT TAB(10) D$:

—v NEXT:PRINT:PRINT:PRINT:PRINT

_.' 30 PRINT TAB(9);CHR$(5);"HIT ANY KEY TO STOP"

40 DIM C(15):FOR 1=0 TO 14:READ A:C(I)=A:NEXT:DATA

fs 2,8,7,5,6,4,1,2,8,7,5,6,4,1,2

50 POKE 53281,0:POKE 648,212:FOR J=0 TO 6:PRINT CH

R$(19);

C*\ 60 FOR I=J TO J+6:POKE 646, C( I) :PRINT TAB(10) D$:N

EXT I,J

70 GET A$:IF A$="M THEN 50

O 80 POKE 648,4:POKE 646,1

O 649 $289 XMAX
Maximum Keyboard Buffer Size

(~\ The value here indicates the maximum number of characters that the

keyboard buffer at 631 ($277) may hold at any one time. Anytime

that the current buffer length in location 198 ($C6) matches the

<> value here, further keypresses will be ignored.

Although the maximum size of the keyboard buffer is usually 10

^v characters, it may be possible to extend it to up to 15 characters by

changing the number here. This could cause the Operating System

pointers to the bottom and top of memory at 641-644 ($281-$284) to

{***) be overwritten, but no real harm should result.
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650 $28A RPTFLG
Flag: Which Keys Will Repeat? LJ

The flag at this location is used to determine whether to continue

printing a character as long as its key is held down, or whether to i>

wait until the key is let up before allowing it to be printed again.

The default value here is 0, which allows only the cursor movement

keys, insert/delete key, and the space bar to repeat. LJ
POKEing this location with 128 ($80) will make all keys repeat

ing, while a value of 64 ($40) will disable all keys from repeating. , i

651 $28B KOUNT
Counter for Timing the Delay Between Key Repeats \J

This location is used as a delay counter to determine how long to

wait while a key is being held down until the next repeat printing of ,

that key. ^
The value here starts at 6. If location 652 ($28C) contains a 0,

the value in this location is counted down once every 1/60 second, v_j

so long as the same key is held down. When this counter gets to 0,

and if the repeat flag at 650 ($28A) allows that key to repeat, its

ASCII equivalent will once again be placed in the keyboard buffer. A ^J
value of 4 is then placed in location 651, allowing subsequent re

peats to occur at a rate of 15 per second. . \

652 $28C DELAY
Counter for Timing the Delay Until the First Key Repeat Begins Kj

This location is used as a delay counter to determine how long a key

must be held down before the entry of that key should be repeated. < j

The initial value of 16 is counted down every 1/60 second, as ^
long as the same key remains pressed. When the value gets to 0, lo

cation 651 ($28B) is counted down from 6, and the key is repeated [^J

when the value there reaches 0. Thus a total of 22/60, or approxi

mately 1/3, second will elapse before the first repeat of a key. The

value here will be held to 0 after the first repeat, so that subsequent ^J
keystroke repetitions occur much more quickly.

653 $28D SHFLAG U
Flag: SHIFT/CTRL/Logo Keypresss

This flag signals which of the SHIFT, CTRL, or Commodore logo ^J
keys are currently being pressed, if any.

A value of 1 signifies that one of the SHIFT keys is being , j

pressed, a 2 shows that the Commodore logo key is down, and 4 ^
means that the CTRL key is being pressed. If more than one key is

held down, these values will be added; for example, a 3 indicates \^J

that SHIFT and logo are both held down.

The value here is used by the Operating System when
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O 655-656

(~* determining how to convert a keypress into a PETASCII character.

There are four different tables used to translate one of the 64 keys

on the keyboard matrix into a PETASCII character, and the combina-

f*\ tion of special SHIFT keys determines which of these tables will be

used (see the entry for location 245 ($F5) for more details on the

^ keyboard tables).

C" Pressing the SHIFT and Commodore logo keys at the same time
will toggle the character set that is presently being used between the

^ uppercase/graphics set, and the lowercase/uppercase set (provided

that the flag at 657 ($291) has not been set to disable this switch).

This changes the appearance of all of the characters on the screen at

C*\ once. It has nothing whatever to do with the keyboard shift tables,
however, and should not be confused with the printing of SHIFTed

fm* characters, which affects only one character at a time. Rather, it is

the result of the value of the character dot data table base address in

53272 ($D018) being changed. The same result may be obtained by

f) POKEing that address directly.

_ 654 $28E LSTSHF
O Last Pattern of SHIFT/CTRL/Logo Keypress

This location is used in combination with the one above to debounce

r^ the special SHIFT keys. This will keep the SHIFT/logo combination

from changing character sets back and forth during a single pressing

of both keys.

655-656 $28F-$290 KEYLOG
^ Vector to Keyboard Table Setup Routine

This location points to the address of the Operating System routine

which actually determines which keyboard matrix lookup table will

f~*\ be used.
The routine looks at the value of the SHIFT flag at 653 ($28D),

jm* and based on what value it finds there, stores the address of the cor-

_ rect table to use at location 245 ($F5).

The interrupt driven keyboard-scanning routine jumps through

f~S this RAM vector to get to the table setup routine. Therefore, it is

possible to alter the address contained in this vector, and direct the

keyscan routine to your own routine, which can check the keypress

*> and SHIFT combination, and act before a character is printed.

Since this routine comes after the keypress, but before it is print-

^ ed, this is a very good place to have your preprocessor routine check

for a particular keypress. An excellent example of such a program is

the "VICword" program by Mark Niggemann, COMPUTERS Second

f*) Book of VIC. This program adds a machine language routine that

checks if the SHIFT or Commodore logo key is pressed while not in

quote mode. If it finds one of these keypresses, it substitutes an en-

** tire BASIC keyword for the letter (A-Z) of the key that was pressed.
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An adaptation of that program for the 64 appears below.

100 IF PEEK(PEEK(56)*256)<>120THENPOKE56,PEEK(56)-
1:CLR

110 HI=PEEK(56):BASE=HI*256

120 PRINTCHR$(147)"READING DATA"

130 FOR AD=0 TO 211:READ BY

140 POKE BASE+AD,BY:NEXT AD

150 :

200 REM RELOCATION ADJUSTMENTS

210 POKE BASE+26,HI:POKE BASE+81,HI

220 POKE BASE+123,HI:POKE BASE+133,HI

230 :

240 PRINT CHR$(147) TAB(15)"***64WORD***":PRINT

250 PRINT"TO TOGGLE THE PROGRAM ON/OFF:":PRINT:PRI

NT:PRINT "SYS";BASE;

260 PRINT CHR$(145);CHR$(145);

270 DATA 120,173,143,2,201,32

280 DATA 208,12,169,220,141,143

290 DATA 2,169,72,141,144,2

300 DATA 88,96,169,32,141,143

310 DATA 2,169,0,141,144,2

320 DATA 88,96,165,212,208,117

330 DATA 173,141,2,201,3,176

340 DATA 110,201,0,240,106,169

350 DATA 194,133,245,169,235,133

360 DATA 246,165,215,201,193,144

370 DATA 95,201,219,176,91,56

380 DATA 233,193,174,141,2,224

390 DATA 2,208,3,24,105,26

400 DATA 170,189,159,0,162,0

410 DATA 134,198,170,160,158,132

420 DATA 34,160,160,132,35,160

430 DATA 0,10,240,16,202,16

440 DATA 12,230,34,208,2,230

450 DATA 35,177,34,16,246,48

460 DATA 241,200,177,34,48,17

470 DATA 8,142,211,0,230,198

480 DATA 166,198,157,119,2,174

490 DATA 211,0,40,208,234,230

500 DATA 198,166,198,41,127,157

510 DATA 119,2,230,198,169,20

520 DATA 141,119,2,76,72,235

530 DATA 76,224,234

550 REM TOKENS FOR SHIFT KEY

570 DATA 153,175,199,135,161,129

580 DATA 141,164,133,137,134,147

590 DATA 202,181,159,151,163,201

600 DATA 196,139,192,149,150,155

610 DATA 191,138
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630 REM TOKENS FOR COMMODORE KEY

650 DATA 152,176,198,131,128,130

660 DATA 142,169,132,145,140,148

670 DATA 195,187,160,194,166,200

680 DATA 197,167,186,157,165,184

690 DATA 190,158,0

Commodore 64word: Keys into BASIC Commands

KEY

A

B

C

D

E

F

G

H

I

J
K

L

M

N

O

P

Q
R

S

T

U

V

w

X

Y

z

SHIFT

PRINT

AND

CHR$

READ

GET

FOR

GOSUB

TO

INPUT

GOTO

DIM

LOAD

MID$

INT

OPEN

POKE

TAB(

RIGHTS

STR$

IF

TAN

VERIFY

DEF

LIST

SIN

RUN

COMMODORE

PRINT*

OR

ASC

DATA

END

NEXT

RETURN

STEP

INPUT*

ON

RESTORE

SAVE

LEN

RND

CLOSE

PEEK

SPC(

LEFTS

VAL

THEN

SQR

CMD

FN

FRE

COS

SYS

657 $291 MODE
Flag: Enable or Disable Changing Character Sets with SHIFT/

Logo Keypress

This flag is used to enable or disable the feature which lets you

switch between the uppercase/graphics and upper/lowercase char

acter sets by pressing the SHIFT and Commodore logo keys simulta

neously.

This flag affects only this special SHIFT key function, and does

not affect the printing of SHIFTed characters. POKEing a value of
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128 ($80) here will disable this feature, while POKEing a value of 0

will enable it once more. The same effect can be achieved by

PRINTing CHR$(8) or CTRL-H to disable the switching of character

sets, and CHR$(9) or CTRL-I to enable it. See entries for locations

53272 ($D018) and 49152 ($C000) for more information on switch

ing character sets.

658 $292 AUTODN
Flag: Screen Scroll Enabled

This location is used to determine whether moving the cursor past

the fortieth column of a logical line will cause another physical line

to be added to the logical line.

A value of 0 enables the screen to scroll the following lines

down in order to add that line; any nonzero value will disable the

scroll. This flag is set to disable the scroll temporarily when there are

characters waiting in the keyboard buffer (these may include cursor

movement characters that would eliminate the need for a scroll).

Location Range:659-663 ($293-$297)
RS-232 Pseudo 6551 Registers

For serial Input/Output via the RS-232 port, the internal software of

the Commodore 64 emulates the operation of a 6551 UART chip

(that's Universal Asynchronous Receiver/Transmitter, for you acro

nym buffs), also known as an ACIA (Asynchronous Communications

Interface Adapter).

These RAM locations are used to mimic the functions of that

chip's hardware command, control, and status registers. Although

RAM locations are allocated for mimicking the 655 l's ability to use

either an on-board baud rate generator or an external clock crystal,

this function is not implemented by the internal software.

Provisions have been made for the user to communicate with

these registers through the RS-232 OPEN command. When device 2

is opened, a filename of up to four characters may be appended.

These four characters are copied to locations 659-662 ($293-$296),

although the last two, which specify a nonstandard baud rate, are

not used because that feature is not implemented.

659 $293 M51CTR
RS-232: Mock 6551 Control Register

This location is used to control the RS-232 serial I/O baud rate

(speed at which data is transmitted and received), the word length

(number of bits per data character), and the number of stop bits used

to mark the end of a transmitted character. It uses the same format

as that of the 6551 UART control register to set these parameters, al

though, as you will see, some of the 6551 configurations are not
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implemented by the software that emulates the UART device. For ex

ample, the standard baud rates which are higher than 2400 baud are

not implemented, presumably because the software cannot keep up

at higher rates. The meanings of the various bit-patterns are as fol

lows:

Bit 7: STOP Bits

0 (bit value of 0)

1 (bit value of 128)

Bits 6-5: WORD LENGTH

00 (bit value of 0)

01 (bit value of 32)

10 (bit value of 64)

11 (bit value of 96)

Bit 4: Unused

Bits 3-0: BAUD RATE

= 1 STOP Bit

=0 STOP Bits

= 8 DATA Bits

= 7 DATA Bits

-6 DATA Bits

=5 DATA Bits

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

(bit

(bit

(bit

(bit

(bit

(bit

(bit

(bit

(bit

(bit

(bit

(bit

(bit

(bit

(bit

(bit

value

value

value

value

value

value

value

value

value

value

value

value

value

value

value

value

of

of

of

of

of

of

of

of

of

of

of

of

of

of

of

of

0)

1)
2)
3)
4)
5)
6)
7)

8)
9)
10)

11)

12)

13)

14)

15)

=Nonstandard (User-Defined) Rate

Implemented)

=50 Baud

= 75 Baud

= 110 Baud

= 134.5 Baud

= 150 Baud

=300 Baud

=600 Baud

= 1200 Baud

= 1800 Baud

=2400 Baud

=3600 Baud (Not Implemented on

Commodore 64)

=4800 Baud (Not Implemented on

Commodore 64)

= 7200 Baud (Not Implemented on

Commodore 64)

=9600 Baud (Not Implemented on

Commodore 64)

((Not

the

the

the

the

= 19200 Baud (Not Implemented on the

Commodore 64)

This register is the only one which must be set when opening RS-

232 device (number 2). The first character of the filename will be

stored here. For example, the statement OPEN 2,2,0,CHR$(6+32)

will set the value of this location to 38. As you can see from the

above chart, this sets up the RS-232 device for a data transfer rate of

300 baud, using seven data bits per character and one stop bit.
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660 $294 M51CDR
RS-232: Mock 6551 Command Register

This location performs the same function as the 6551 UART chip's

command register, which specifies type of parity, duplex mode, and

handshaking protocol.

The type of parity used determines how the 64 will check that

RS-232 data is received correctly.

The duplex mode can be either full duplex (the 64 will be able

to transmit at the same time it is receiving) or half duplex (it will

take turns sending and receiving).

The handshaking protocol has to do with the manner in which

the sending device lets the receiver know that it is ready to send

data, and the receiver lets the sender know that it has gotten the

data correctly. The meanings of the bit patterns in this register are as

follows:

Bits 7-5: Parity

XXO (bit value of

0,64,128 or 192) =No Parity Generated or Received

001 (bit value of 32) =Odd Parity Transmitted and Received

Oil (bit value of 96) =Even Parity Transmitted and Received

101 (bit value of 160) =Mark Parity Transmitted, None Checked

111 (bit value of 224) = Space Parity Transmitted, None Checked

Bit 4: Duplex

0 (bit value of 0) =Full Duplex

1 (bit value of 16) =Half Duplex

Bits 3-1: Unused

Bit 0: Handshake Protocol

0 (bit value of 0) =3 Line

1 (bit value of 1) =X Line

This register can be set at the user's option when opening RS-232

device (number 2). The second character of the filename will be

stored here. For example, the statement

OPEN 2,2,0,CHR$(6+32) +CHR$(32 +16)

will set the value of this location to 48, which is the value of the sec

ond character in the filename portion of the statement. As you can

see from the above chart, this configures the RS-232 device for half

duplex data transfer using odd parity and three-line handshaking.

661-662 $295-$296 M51AJB
RS-232: Nonstandard Bit Timing

These locations are provided for storing a nonstandard user-defined

baud rate, to be used when the low nybble of the control register at

659 ($293) is set to 0. They were presumably provided to conform to
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the model of the 6551 UART device, which allows a nonstandard

baud rate to be generated from an external reference crystal. How

ever, the software emulation of that feature is not provided in the

current version of the Kernal, and thus these locations are currently

nonfunctional.

Nonetheless, Commodore has specified that if the nonstandard

baud rate feature is implemented, the value placed here should equal

the system clock frequency divided by the baud rate divided by 2

minus 100, stored in low-byte, high-byte order. The system clock

frequency for American television monitors (NTSC standard) is

1.02273 MHz, and for European monitors (PAL standard) .98525

MHz.

663 $297 RSSTAT
RS-232: Mock 6551 Status Register

The contents of this register indicate the error status of RS-232 data

transmission. That status can be determined by PEEKing this loca

tion directly, by referencing the BASIC reserved variable ST, or by

using the Kernal READST (65031, $FE07) routine.

Note that if you use ST or Kernal, this location will be set to 0

after it is read. Therefore, if you need to test more than one bit,

make sure that each test preserves the original value, because you

won't be able to read it again. The meaning of each bit value is spec

ified below:

Bit 7: 1 (bit value of 128)=Break Detected

Bit 6: 1 (bit value of 64)=DTR (Data Set Ready) Signal Missing

Bit 5: Unused

Bit 4: 1 (bit value of 16)=CTS (Clear to Send) Signal Missing

Bit 3: 1 (bit value of 8)=Receiver Buffer Empty

Bit 2: 1 (bit value of 4)=Receiver Buffer Overrun

Bit 1: 1 (bit value of 2)=Framing Error

Bit 0: 1 (bit value of l)=Parity Error

The user is responsible for checking these errors and taking appro

priate action. If, for example, you find that Bit 0 or 1 is set when

you are sending, indicating a framing or parity error, you should re-

send the last byte. If Bit 2 is set, the GET#2 command is not being

executed quickly enough to empty the buffer (BASIC should be able

to keep up at 300 baud, but not higher). If Bit 7 is set, you will want

to stop sending, and execute a GET#2 to see what is being sent.

664 $298 BITNUM
RS-232: Number of Bits Left to be Sent/Received

This location is used to determine how many zero bits must be add

ed to the data character to pad its length out to the word length

specified in 659 ($293).
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665-666 $299-$29A BAUDOF
Time Required to Send a Bit

This location holds the prescaler value used by CIA #2 timers A

andB.

These timers cause an NMI interrupt to drive the RS-232 receive

and transmit routines CLOCK/PRESCALER times per second each,

where CLOCK is the system 02 frequency of 1,022,730 Hz (985,250

if you are using the European PAL television standard rather than

the American NTSC standard), and PRESCALER is the value stored

at 56580-1 ($DD04-5) and 56582-3 ($DD06-7), in low-byte, high-

byte order. You can use the following formula to figure the correct

prescaler value for a particular RS-232 baud rate:

PRESCALER=((CLOCK/BAUDRATE)/2)-100

The American (NTSC standard) prescaler values for the standard RS-

232 baud rates which the control register at 659 ($293) makes avail

able are stored in a table at 65218 ($FEC2), starting with the two-

byte value used for 50 baud. The European (PAL standard) version

of that table is located at 58604 ($E4EC).

Location Range: 667-670 ($29B-$29E)
Byte Indices to the Beginning and End of Receive and Transmit

Buffers

The two 256-byte First In, First Out (FIFO) buffers for RS-232 data

reception and transmission are dynamic wraparound buffers. This

means that the starting point and the ending point of the buffer can

change over time, and either point can be anywhere within the buff

er. If, for example, the starting point is at byte 100, the buffer will

fill towards byte 255, at which point it will wrap around to byte 0

again. To maintain this system, the following four locations are used

as indices to the starting and the ending point of each buffer.

667 $29B RIDBE
RS-232: Index to End of Receive Buffer

This index points to the ending byte within the 256-byte RS-232 re

ceive buffer, and is used to add data to that buffer.

668 $29C RIDBS
RS-232: Index to Start of Receive Buffer

This index points to the starting byte within the 256-byte RS-232 re

ceive buffer, and is used to remove data from that buffer.

669 $29D RODBS
RS-232: Index to Start of Transmit Buffer

This index points to the starting byte within the 256-byte RS-232

transmit buffer, and is used to remove data from that buffer.
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670 $29E RODBE
RS-232: Index to End of Transmit Buffer

This index points to the ending byte within the 256-byte RS-232

transmit buffer, and is used to add data to that buffer.

671-672 $29F-$2A0 IRCLTMP
Save Area for IRQ Vector During Cassette I/O

The routines that read and write tape data are driven by an IRQ in

terrupt. In order to hook one of these routines into the interrupt, the

RAM IRQ vector at 788-789 ($314-$315) must be changed to point

to the address at which it starts. Before that change is made, the old

IRQ vector address is saved at these locations, so that after the tape

I/O is finished, the interrupt that is used for scanning the keyboard,

checking the stop key, and updating the clock can be restored.

You will note that all of the above functions will be suspended

during tape I/O.

673 $2A1 ENABL
RS-232 Interrupts Enabled

This location holds the active NMI interrupt flag byte from CIA #2

Interrupt Control Register (56589, $DD0D). The bit values for this

flag are as follows:

Bit 4: 1 (bit value of 16)=System is Waiting for Receiver Edge

Bit 1: 1 (bit value of 2) =System is Receiving Data

Bit 0: 1 (bit value of 1) = System is Transmitting Data

674 $2A2
Indicator of CIA #1 Control Register B Activity During Cassette

I/O

675 $2A3
Save Area for CIA #1 Interrupt Control Register During Cassette

Read

676 $2A4
Save Area for CIA #1 Control Register A During Cassette Read

677 $2A5
Temporary Index to the Next 40-Column Line for Screen

Scrolling

678 $2A6
PAL/NTSC Flag

At power-on, a test is performed to see if the monitor uses the

NTSC (North American) or PAL (European) television standard.
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This test is accomplished by setting a raster interrupt for scan

line 311, and testing if the interrupt occurs. Since NTSC monitors

have only 262 raster scan lines per screen, the interrupt will occur

only if a PAL monitor is used. The results of that test are stored

here, with a 0 indicating an NTSC system in use, and one signifying

a PAL system.

This information is used by the routines which set the prescaler

values for the system IRQ timer, so that the IRQ occurs every 1/60

second. Since the PAL system 02 clock runs a bit slower than the

NTSC version, this prescaler value must be adjusted accordingly.

679-767 $2A7-$2FF
Unused

The programmer may use this area for machine language subrou

tines, or for graphics data storage.

If the VIC-II chip is using the bottom 16K for graphics memory

(the default setting when the system is turned on), this is one of the

few free areas available for storing sprite or character data. Locations

704-767 could be used for sprite data block number 11, without in

terfering with BASIC program text or variables.

Location Range: 768-779 ($300-$30B)
BASIC Indirect Vector Table

Several important BASIC routines are vectored through RAM. This

means that the first instruction executed by the routine is an indirect

jump to a location pointed to by one of the vectors in this table.

On power-up, the system sets these vectors to point to the next

instruction past the original JuMP instruction. The routine then con

tinues with that instruction as if the jump never took place. For ex

ample, the BASIC error message routine starts at 42039 ($A437) with

the instruction JMP ($300). The indirect vector at 768 ($300) points

to 42042 ($A43A), which is the instruction immediately following

JMP ($300).

Although this may seem like a fancy way of accomplishing

nothing, using these indirect vectors serves two important purposes.

First, it allows you to use these important BASIC routines without

knowing their address in the BASIC ROM.

For example, the routine to LIST the ASCII text of the single-

byte BASIC program token that is currently in the Accumulator (.A)

is located at one address in the VIC, and another in the 64. On fu

ture Commodore computers it may be found at still another location.

Yet as long as the routine is vectored in RAM at 774 ($306), the

statement QP=PEEK(774)+256*PEEK(775) would find the address

of that routine on any of the machines. Thus, entering such routines

through RAM vectors rather than a direct jump into the ROMs helps
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to keep your programs compatible with different machines.

The other important effect of having these vectors in RAM is

that you can alter them. In that way, you can redirect these impor

tant BASIC routines to execute your own preprocessing routines first.

If you wanted to add commands to BASIC, for example, how

would you go about it? First, you would need to change the BASIC

routines that convert ASCII program text to tokenized program for

mat, so that when a line of program text was entered, the new

keyword would be stored as a token.

Next, you would need to change the routine that executes

tokens, so that when the interpreter comes to your new keyword

token, it will take the proper action.

You would also have to change the routine that converts tokens

back to ASCII text, so that your program would LIST the token out

correctly. And you might want to alter the routine that prints error

messages, to add new messages for your keyword.

As you will see, vectors to all of these routines can be found in

the following indirect vector table. Changing these vectors is a much

more elegant and efficient solution than the old wedge technique dis

cussed at location 115 ($73).

768-769 $300-$301 IERROR
Vector to the Print BASIC Error Message Routine

This vector points to the address of the ERROR routine at 58251

($E38B).

770-771 $302-$303 IMAIN
Vector to the Main BASIC Program Loop

This vector points to the address of the main BASIC program loop at

42115 ($A483). This is the routine that is operating when you are in

the direct mode (READY). It executes statements, or stores them as

program lines.

772-773 $304-$305 ICRNCH
Vector to the Routine That Crunches the ASCII Text of

Keywords into Tokens

This vector points to the address of the CRUNCH routine at 42364

($A57C).

774-775 $306-$307 ICIPLOP
Vector to the Routine That Lists BASIC Program Token as ASCII

Text

This vector points to the address of the QPLOP routine at 42778

($A71A).
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776-777 $308-$309 IGONE
Vector to the Routine That Executes the Next BASIC Program

Token

This vector points to the address of the GONE routine at 42980

($A7E4) that executes the next program token.

778-779 $30A$30B IEVAL
Vector to the Routine That Evaluates a Single-Term Arithmetic

Expression

This vector points to the address of the EVAL routine at 44678

($AE86) which, among other things, is used to evaluate BASIC func

tions such as INT and ABS.

Location Range: 780-783 <$30C-$30F)
Register Storage Area

The BASIC SYS command uses this area to store 6510 internal regis

ters—the Accumulator (.A), the .X and Y. index registers, and the

status register, .P.

Before every SYS command, each of the registers is loaded with

the value found in the corresponding storage address. After the ML

program finishes executing, and returns to BASIC with an RTS in

struction, the new value of each register is stored in the appropriate

storage address. This is true only of SYS, not of the similar USR

command.

This feature allows you to place the necessary preentry values

into the registers from BASIC before you SYS to a Kernal or BASIC

ML routine. It also enables you to examine the resulting effect of the

routine on the registers, and to preserve the condition of the registers

on exit for subsequent SYS calls.

An extremely practical application comes immediately to mind.

Although the 64's BASIC 2 has many commands for formatting

printed characters on the monitor screen (for example, TAB, SPC,

PRINT A$,B), there are none to adjust the vertical cursor position.

There is a Kernal routine, PLOT (58634, $E50A), which will al

low you to position the cursor anywhere on the screen. In order to

use it, however, you must first clear the carry flag (set it to 0), and

then place the desired horizontal column number in the .Y register

and the vertical row number in the .X register before entering the

routine with a SYS 65520. Using the register storage area, we can

print the word HELLO at row 10, column 5 with the following

BASIC line:

POKE 781,10:POKE 782,5:POKE 783,0:SYS 65520:PRINT "HELLO"

You can also use these locations to help you take advantage of

Kernal routines that return information in the register. For example,
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the SCREEN routine (58629, $E505) returns the number of screen

rows in the .Y register, and the number of columns in the .X register.

Using this routine, a BASIC program could be written to run on ma

chines with different screen formats (for example, the 64 and the

VIC-20). Just PEEK(781) after a SYS 65517 to see how many screen

columns the computer display has.

780 $30C SAREG
Storage Area for .A Register (Accumulator)

781 $30D SXREG
Storage Area for .X Index Register

782 $30E SYREG
Storage Area for .Y Index Register

783 $30F SPREG
Storage Area for .P (Status) Register

The Status (.P) register has seven different flags. Their bit assign

ments are as follows:

Bit 7 (bit value of 128) = Negative

Bit 6 (bit value of 64) = Overflow

Bit 5 (bit value of 32) = Not Used

Bit 4 (bit value of 16) = BREAK

Bit 3 (bit value of 8) = Decimal

Bit 2 (bit value of 4) = Interrupt Disable

Bit 1 (bit value of 2) = Zero

Bit 0 (bit value of 1) = Carry

If you wish to clear any flag before a SYS, it is safe to clear them all

with a POKE 783,0. The reverse is not true, however, as you must

watch out for the Interrupt disable flag.

A 1 in this flag bit is equal to an SEI instruction, which turns off

all IRQ interrupts (like the one that reads the keyboard, for exam

ple). Turning off the keyboard could make the computer very diffi

cult to operate! To set all flags except for Interrupt disable to 1,

POKE 783,247.

784 $310 USRPOK
Jump Instruction for User Function ($4C)

The value here (76, $4C) is first part of the 6510 machine langauge

JuMP instruction for the USR command.
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785-786 $311-$312 USRADD
Address of USR Routine (Low Byte First) \J

These locations contain the target address of the USR command.

They are initialized by the Operating System to point to the BASIC m

error message handler routine, so that if you try to execute a USR

call without changing these values, you will receive an ILLEGAL

QUANTITY error message. \J

In order to successfully execute a USR call, you must first POKE

in the target address in low-byte, high-byte order. You can calculate

these two values for any address with the formula: ^

HI=INT(AD/256):LO=AD-(HI*256)

For example, if the USR routine started at 49152 ($C000), you would ^
POKE 486,INT(49152/256):POKE 485,49152-(PEEK(486)*256)

before executing the USR command. \i

What makes the USR command different from SYS is that you

can pass a parameter into the machine language routine by placing it

in parentheses after the USR keyword, and you can pass a parameter kJ
back to a variable by assigning its value to the USR function.

In other words, the statement X=USR(50) will first put the .-, >

number 50 in floating point format into the Floating Point Accumu-

lator (FAC1) at 97-102 ($61-$66). Then, the machine language

program designated by the address at this vector will be executed. \^J

Finally, the variable X will be assigned the floating point value

which ends up in FAC1 after the user-written routine is finished.

Since floating point representation is difficult to work with, it is ^
handy to change these floating point parameters to integers before

working with them. Fortunately, there are vectored routines which ( -)

will do the conversions for you. The routine vectored at locations 3-4

converts the number in FAC1 to a two-byte signed integer, with

the low byte in the .Y register (and location 101 ($65)) and the high ^J
byte in the Accumulator (.A). Remember, that number is converted

to a signed integer in the range between 32767 and -32768, with Bit , x

7 of the high byte used to indicate the sign. ^
To pass a value back through the USR function, you need to

place the number into FAC1. To convert a singed integer to \^j

floating point format, place the high byte into the Accumulator (.A),

the low byte into the .Y register, and jump through the vector at

location 5-6 with a JMP ($0005) instruction. The floating point result {J
will be left in FAC1.

787 $313
Unused
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788-789 $314-$315 CINV
Vector to IRQ Interrupt Routine

This vector points to the address of the routine that is executed

when an IRQ interrupt occurs (normally 59953 ($EA31)).

At power-on, the CIA #1 Timer B is set to cause an IRQ inter

rupt to occur every 1/60 second. This vector is set to point to the

routine which updates the software clock and STOP key check,

blinks the cursor, maintains the tape interlock, and reads the key

board. By changing this vector, the user can add or substitute a ma

chine language routine that will likewise execute every 1/60 second.

The user who is writing IRQ interrupt routines should consider the

following:

1. It is possible for an IRQ interrupt to occur while you are

changing this vector, which would cause an error from which no re

covery could be made. Therefore, you must disable all IRQ interrupts

before changing the contents of this location, and reenable them af

terwards, by using the 6510 SEI and CLI instructions, or by using

the Kernal VECTOR routine (64794, $FD1A) to set this vector.

2. There is some code in ROM that is executed before the inter

rupt routine is directed through this vector. This code checks wheth

er the source of the interrupt was an IRQ or the BRK instruction. It

first preserves the contents of all the registers by pushing them onto

the stack in the following sequence: PHA, TXA, PHA, TYA, PHA. It

is up to the user to restore the stack at the end of his routine, either

by exiting through the normal IRQ, or with the sequence: PLA, TAY,

PLA, TAX, PLA, RTI.

3. There is only one IRQ vector, but there are many sources for

IRQ interrupts (two CIA chips, and several VIC chip IRQs). If you

plan to enable IRQs from more than one source, the IRQ routine

here must determine the source, and continue the routine in the ap

propriate place for an IRQ from that source.

In the same vein, if you replace the normal IRQ routine with

your own, you should be aware that the keyboard's scanning and

clock update will not occur unless you call the old interrupt routine

once every 1/60 second. It is suggested that if you plan to use that

routine, you save the old vector address in some other location. In

that way, you can JuMP to the keyboard interrupt routine through

this alternate vector, rather than assuming that the ROM address

will never change and that it is safe to jump into the ROM directly.

790-791 $316-$317 CBINV
Vector: BRK Instruction Interrupt

This vector points to the address of the routine which will be execut

ed anytime that a 6510 BRK instruction (00) is encountered.

The default value points to a routine that calls several of the
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Kernal initialization routines such as RESTOR, IOINIT and part of

CINT, and then jumps though the BASIC warm start vector at

40962. This is the same routine that is used when the STOP and

RESTORE keys are pressed simulatneously, and is currently located

at 65126 ($FE66).

A machine language monitor program will usually change this

vector to point to the monitor warm start address, so that break

points may be set that will return control to the monitor for debug

ging purposes.

792-793 $318-$319 NMINV
Vector: Non-Maskable Interrupt

This vector points to the address of the routine that will be executed

when a Non-Maskable Interrupt (NMI) occurs (currently at 65095,

$FE47).

There are two possible sources for an NMI interrupt. The first is

the RESTORE key, which is connected directly to the 6510 NMI line.

The second is CIA #2, the interrupt line of which is connected to the

6510 NMI line.

When an NMI interrupt occurs, a ROM routine sets the Interrupt

disable flag, and then jumps through this RAM vector. The default

vector points to an interrupt routine which checks to see what the

cause of the NMI was.

If the cause was CIA #2, the routine checks to see if one of the

RS-232 routines should be called. If the source was the RESTORE

key, it checks for a cartridge, and if present, the cartridge is entered

at the warm start entry point. If there is no cartridge, the STOP key

is tested. If the STOP key was pressed at the same time as the

RESTORE key, several of the Kernal initialization routines such as

RESTOR, IONIT and part of CINT are executed, and BASIC is en

tered through its warm start vector at 40962. If the STOP key was

not pressed simultaneously with RESTORE, the interrupt will end

without letting the user know that anything happened at all when

the RESTORE key was pressed.

Since this vector controls the outcome of pressing the RESTORE

key, it can be used to disable the STOP/RESTORE sequence. A sim

ple way to do this is to change this vector to point to the RTI in

struction. A simple POKE 792,193 will accomplish this. To set the

vector back, POKE 792,71. Note that this will cut out all NMIs, in

cluding those required for RS-232 I/O.

Location Range: 794-813 ($31A-$32D)
Kernal Indirect Vectors

There are 39 Kernal routines for which there are vectors in the jump

table located at the top of the ROM (65409, $FF81). For ten of these
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>pk routines, the jump table entry contains a machine language instruc-

' tion to jump to the address pointed to by the RAM vector in this

table. The addresses in this table are initialized to point to the

f"^ corresponding routines in the Kernal ROM. Since these addresses are

in RAM, however, any entry in this table may be changed. This en

ables the user to add to these routines, or to replace them completely.

O You will notice, for example, that many of these routines in
volve Input/Output functions. By changing the vectors to these

^m. routines, it is possible to support new I/O devices, such as an IEEE

disk drive used through an adapter.

The user should be cautioned that since some of these routines

O> are interrupt-driven, it is dangerous to change these vectors without

first turning off all interrupts. For a safe method of changing all of

these vectors at one time, along with the interrupt vectors above, see

O the entry for the Kernal VECTOR routine at 64794 ($FD1A).
More specific information about the individual routines can be

S~\ found in the descriptions given for their ROM locations.

794-795 $31A-$31B IOPEN
r*\ Vector to Kernal OPEN Routine (Currently at 62282, $F34A)

796-797 $31C-$31D ICLOSE
Vector to Kernal CLOSE Routine (Currently at 62097, $F291)

798-799 $31E-$31F ICHKIN
Vector to Kernal CHKIN Routine (Currently at 61966, $F20E)

800-801 $320-$321 ICKOUT
Vector to Kernal CKOUT Routine (Currently at 62032, $F250)

802-803 $322-$323 ICLRCH
Vector to Kernal CLRCHN Routine (Currently at 62259, $F333)

804-805 $324-$325 IBASIN
Vector to Kernal CHRIN Routine (Currently at 61783, $F157)

806-807 $326-$327 IBSOUT
Vector to Kernal CHROUT Routine (Currently at 61898, $F1CA)

808-809 $328-$329 ISTOP
Vector to Kernal STOP Routine (Currently at 63213, $F6ED)

This vector points to the address of the routine that tests the STOP

key. The STOP key can be disabled by changing this with a POKE

808,239. This will not disable the STOP/RESTORE combination,

however. To disable both STOP and STOP/RESTORE, POKE
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808,234 (POKEing 234 here will cause the LIST command not to

function properly). To bring things back to normal in either case, (J

POKE 808,237.

810-811 $32A-$32B IGETIN U
Vector to Kernal GETIN Routine (Currently at 61758, $F13E)

812-813 $32C-$32D ICLALL -
Vector to Kernal CLALL Routine (Currently at 62255, $F32F)

814-815 $32E-$32F USRCMD w
Vector to User-Defined Command (Currently Points to BRK at

65126, $FE66) ^

This appears to be a holdover from PET days, when the built-in ma

chine language monitor would JuMP through the USRCMD vector \j

when it encountered a command that it did not understand, allowing

the user to add new commands to the monitor.

Although this vector is initialized to point to the routine called KJ
by STOP/RESTORE and the BRK interrupt, and is updated by the

Kernal VECTOR routine (64794, $FD1A), it does not seem to have

the function of aiding in the addition of new commands.

816-817 $330-$331 ILOAD
Vector to Kernal LOAD Routine (Currnetly at 62622, $F49E)

818-819 $332-$333 ISAVE
Vector: Kernal SAVE Routine (Currently at 62941, $F5DD)

820-827 $334-$33B
Unused

Eight free bytes for user vectors or other data.

828-1019 $33C-$3FB TBUFFER
Cassette I/O Buffer

This 192-byte buffer area is used to temporarily hold data that is

read from or written to the tape device (device number 1).

When not being used for tape I/O, the cassette buffer has long

been a favorite place for Commodore programmers to place short

machine language routines (although the 64 has 4K of unused RAM

above the BASIC ROM at 49152 ($C000) that would probably better

serve the purpose).

Of more practical interest to the 64 programmer is the possible

use of this area for VIC-II chip graphics memory (for example, sprite

shape data or text character dot data). If the VIC-II chip is banked to

the lowest 16K of memory (as is the default selection), there is very

little memory space which can be used for such things as sprite
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shape data without conflict. If the tape is not in use, locations 832-

895 ($340-$37F) can be used as sprite data block number 13, and lo

cations 896-959 ($380-$3BF) can be used as sprite data block number

14.

The types of tape blocks that can be stored here are program

header blocks, data header blocks, and data storage blocks.

The first byte of any kind of block (which is stored at location

828, $33C) identifies the block type. Header blocks follow this iden

tifier byte with the two-byte starting RAM address of the tape data,

the two-byte ending RAM address, and the filename, padded with

blanks so that the total length of the name portion equals 187 bytes.

Data storage blocks have 191 bytes of data following the identifier

byte. The meanings of the various identifier blocks are as follows:

A value of 1 signifies that the block is the header for a

relocatable program file, while a value of 3 indicates that the block is

the header for a nonrelocatable program file.

A relocatable file is created when a program is SAVEd with a

secondary address of 0 (or any even number), while a nonrelocatable

program file is created if the secondary SAVE address is 1 (or any

odd number). The difference between the two types of files is that a

nonrelocatable program will always load at the address specified in

the header. A relocatable program will load at the current start-of-

BASIC address unless the LOAD statement uses a secondary address

of 1, in which case it will also be loaded at the address specified in

the header.

You should note that a program file uses the cassette buffer only

to store the header block. Actual program data is transferred directly

to or from RAM, without first being buffered.

An identifier value of 4 means that the block is a data file head

er. Such a header block is stored in the cassette buffer whenever a

BASIC program OPENs a tape data file for reading or writing. Sub

sequent data blocks start with an identifier byte of 2. These blocks

contain the actual data byte written by the PRINT #1 command, and

read by the GET #1 and INPUT #1 commands. Unlike the body of a

program file, these blocks are temporarily stored in the cassette buff

er when being written or read.

An identifier byte of 5 indicates that this block is the logical end

of the tape. This signals the Kernal not to search past this point,

even if there are additional tape blocks physically present on the

tape.

1020-1023 $3FC-$3FF
Unused

Four more free bytes.
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1024-2023

IK to 40K
Screen Memory, Sprite

Pointers, and BASIC

Program Text

1024-2047 $400-$7FF VICSCN
Video Screen Memory Area

This is the default location of the video screen memory area, which

contains the video matrix and the sprite data pointers. Keep in mind,

however, that the video screen memory area can be relocated to start

on any even IK boundary. Its location at any given moment is deter

mined by the VIC-II chip memory control register at 53272 ($D018),

and the VIC-II memory bank select bits on CIA #2 Data Port A

(56576, $DD00).

1024-2023 $400-$7E7
Video Matrix: 25 Lines by 40 Columns

The video matrix is where text screen characters are stored in RAM.

Normally, the VIC-II chip will treat each byte of memory here as a

screen display code and will display the text character that corre

sponds to that byte of code. The first byte of memory here will be

displayed in the top-left corner of the screen, and subsequent bytes

will be displayed in the columns to the right and the rows below

that character.

It is possible to make text or graphics characters appear on the

screen by POKEing their screen codes directly into this area of RAM.

For example, the letter A has a screen code value of 1. Therefore,

POKE 1024,1 should make the letter A appear in the top-left corner

of the screen.

However, you should be aware that the most current version of

the Operating System initializes the color RAM which is used for the

foreground color of text characters to the same value as the back

ground color every time that the screen is cleared. The result is that

although the POKE will put a blue A on the screen, you won't be

able to see it because it is the same color blue as the background.

This can be remedied by POKEing a different value into color RAM

(which starts at 55296, $D800).
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2040-2047 u

u

A POKE 1024,1:POKE 1024+54272,1 will put a white A in the

upper-left corner of the screen. The loop i^J

FOR 1=0 TO 255:POKE 1024+I,I:POKE 1024+54272+1,1 :NEXT

will display all of the characters in white at the top of the screen. \^J

Another solution to the color RAM problem is to fool the Operating

System into initializing the color RAM for you. If you change the >

background color to the desired foreground color before you clear v^
the screen, color RAM will be set to that color. Then, all you have to

do is change the background color back to what it was. This example \^J

will show how it's done:

10 POKE 53281,2:REM BACKGROUND IS RED ( }

20 PRINT CHR$(147):REM CLEAR SCREEN W
30 POKE 53281,1:REM BACKGROUND IS WHITE

40 POKE 1024,1 :REM RED "A" APPEARS IN TOP LEFT CORNER ^J

2040-2047 $7F8-$7FF
Sprite Shape Data Pointers <J

The last eight bytes of the video matrix (whether it is here at the de

fault location, or has been relocated elsewhere) are used as pointers m

to the data blocks used to define the sprite shapes.

Each sprite is 3 bytes wide (24 bits) by 21 lines high. It therefore

requires 63 bytes for its shape definition, but it actually uses 64 bytes O*
in order to arrive at an even 256 shape blocks in the 16K area of

RAM which the VIC-II chip addresses. , >

Each pointer holds the current data block being used to define

the shape of one sprite. The block number used to define the shape

of Sprite 0 is held in location 2040 ($7F8), the Sprite 1 shape block is (^J

designated by location 2041 ($7F9), etc. The value in the pointer

times 64 equals the starting location of the sprite shape data table.

For example, a value of 11 in location 2040 indicates that the shape ^
data for Sprite 0 starts at address 704 (11*64), and continues for 63

more bytes to 767. ,j

For additional information on sprite graphics, see the entries for

individual VIC-II chip sprite graphics locations, and the summary at

the beginning of the VIC-II chip section, at 53248 ($D000). O

2048-40959 $800-$9FFF
BASIC Program Text ^

This is the area where the actual BASIC program text is stored. The

text of a BASIC program consists of linked lines of program tokens. ^J

Each line contains the following:

1. A two-byte pointer to the address of the next program line (in

standard low-byte, high-byte order). After the last program line, a ^
link pointer consisting of two zeros marks the end of the program.

u
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4096-8192

2. A two-byte line number (also in low-byte, high-byte order).

3. The program commands. Each keyword is stored as a one-

byte character whose value is equal to or greater than 128. PRINT,

for example, is stored as the number 151. Other elements of the

BASIC command, such as variable names, string literals ("HELLO"),

and numbers, are stored using their ASCII text equivalents.

4. A 0 character, which acts as a line terminator. In order for

BASIC to work correctly, the first character of the BASIC text area

must be 0.

A quick review of the BASIC pointers starting at 43 ($2B) re

veals that the layout of the BASIC program area (going from lower

memory addresses to higher) is as follows:

BASIC Program Text

Non-Array Variables and String Descriptors

Array Variables

Free Area (Reported by FRE(O))

String Text Area (Strings build from top of memory down into free

area)

BASIC ROM

It is interesting to note that the NEW command does not zero out

the text area, but rather replaces the first link address in the BASIC

program with two zeros, indicating the end of the program. There

fore, you can recover a program from a NEW by replacing the first

link address, finding the address of the two zeros that actually mark

the end of the program, and setting the pointers at 45, 47, and 49

(which all point to the end of a BASIC program before the program

is RUN) to the byte following those zeros.

4096-8191 $1000-$lFFF
Character ROM Image for VIC-II Chip When Using Memory

Bank 0 (Default)

Though the VIC-II chip shares memory with the 6510 processor

chip, it does not always see that memory in exactly the same way as

the main microprocessor.

Although the 6510 accesses RAM at these locations, when the

VIC-II is banked to use the first 16K of RAM (which is the default

condition), it sees the character ROM here (the 6510 cannot access

this ROM unless it is switched into its memory at 49152 ($C000)).

This solves the riddle of how the VIC-II chip can use the character

ROM at 49152 ($C000) for character shape data and RAM at 1024

($400), when it can only address memory within a 16K range. It also

means that the RAM at 4096-8192 cannot be used for screen display

memory or user-defined character dot data, and sprite data blocks

64-127 are not accessible.
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You can verify this by turning on bitmap graphics with the

screen memory set to display addresses from 0 to 8192. You will see

that the bottom portion of the screen shows all of the text character

shapes stored in the ROM. For more information on the format of

text character data storage, see the description of the Character ROM

at 49152 ($C000).

32768 $8000
Autostart ROM Cartridge

An 8K or 16K autostart ROM cartridge designed to use this as a

starting memory address may be plugged into the Expansion Port on

the back. If the cartridge ROM at locations 32772-32776 ($8004-

$8008) contains the numbers 195, 194, 205, 56, 48 ($C3, $C2, $CD,

$38, $30) when the computer powers up, it will start the program

pointed to by the vector at locations 32768-32769 ($8000-$8001),

and will use 32770-32771 ($8002-$8003) for a warm start vector

when the RESTORE key is pressed. These characters are PETASCII

for the inverse letters CBM, followed by the digits 80. An autostart

cartridge may also be addressed at 40960 ($A000), where it would

replace BASIC, or at 61440 ($F000), where it would replace the

Kernal.

It is possible to have a 16K cartridge sitting at 32768 ($8000),

such as Simon's BASIC, which can be turned on and off so that the

BASIC ROM underneath can also be used. Finally, it is even possible

to have bank-selected cartridges, which turn banks of memory in the

cartridge on and off alternately, so that a 32K program could fit into

only 16K of addressing space.

36864-40959 $9000-$9FFF
Character ROM Image for VIC-II Chip When Using Memory

Bank 2

When the VIC-II chip is set up to use the third 16K block of memory

for graphics (as would be the case when the 64 is set up to emulate

the PET, which has its text screen memory at 32768, $8000, it sees

the character generator ROM at this address (see entry at 4096

($1000) above for more details).

It should be noted that the character ROM is available only

when the VIC-II chip is using banks 0 or 2. When using one of the

other two banks, the user must supply all of the character shape

data in a RAM table.
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8K BASIC ROM
and 4K Free
RAM

Locations 40960 to 49151 ($A000 to $BFFF) are used by the BASIC

ROM when it is selected (which is the default condition). BASIC is

the 64's main program, which is always run if there is no autostart

cartridge inserted at power-up time. When the 64 tells you READY,

that's BASIC talking.

The BASIC interpreter that comes with the 64 is, aside from be

ing located in a different memory space, almost identical to the

Microsoft BASIC interpreter found on the VIC-20. Both of these in

terpreters are slightly modified versions of PET BASIC 2.0, also

known as PET BASIC 3.0 or Upgrade BASIC, because it was an up

graded version of the BASIC found on the original PET.

This is a somewhat mixed blessing, because while PET BASIC

was, in its day, quite an advanced language for use with an eight-bit

microprocessor, it lacks several of the features (such as error trap

ping) which are now standard on most home computers. And, of

course, it makes no provision whatever for easy use of the many

graphics and sound capabilities made available by the new dedicated

video and sound support chips.

On the other hand, its faithfulness to the original Commodore

BASIC allows a large body of software to be translated for the 64

with little change (in most cases, the PET Emulator program from

Commodore will allow you to run PET programs with no changes).

Programming aids and tricks developed for the PET and VIC will,

for the most part, carry over quite nicely to the 64. Although there is

no official source code listing of the ROM available from Commo

dore, this version of BASIC has been around long enough that it has

been thoroughly disassembled, dissected, and documented by PET

users.

The labels used here correspond to those used by Jim Butterfield

in his PET memory maps, which are well-known among PET BASIC

users. They should, therefore, provide some assistance in locating

equivalent routines on the two machines. A good description of the
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workings of PET BASIC can be found in Programming the PET/CBM

by Raeto West.

It is beyond the scope of this book to detail the inner workings

of each routine in the BASIC interpreter. However, the following

summary of routines and their functions should aid the user who is

interested in calling BASIC routines from his or her own program, or

in modifying the BASIC.

Please keep in mind that the entry and exit points listed for

routines that perform a particular function are to be used as guide-

posts, and not absolutes. In fact, BASIC enters many of these

routines from slightly different places to accomplish different tasks.

Some subroutines are called by so many commands that it is hard to

say which they belong to. You will even find that some whole com

mands are part of other commands. Where it is important for you to

know the details of a particular routine, you will need to obtain a

disassembly of that section and look at the machine language pro

gram itself.

It should be noted that when BASIC is not needed, it can be

switched out and replaced by a machine language program in RAM,

by an 8K ROM cartridge, or by the last half of a 16K ROM cartridge

that starts at 32768 ($8000). See location 1 for more information on

the different memory configurations.

Also, it should be remembered that even when the BASIC ROM

is switched in, the RAM underneath can be accessed by the VIC-II

chip and used for screen graphics. See location 56576 ($DD00) for

more information.

40960-40961 $A000-$A001
Cold Start Vector

This vector points to the address of the routine used to initialize

BASIC. After the Operating System finishes its power-on activities, it

enters the BASIC program through this vector. The most visible ef

fect of the BASIC initialization routine is that the screen is cleared,
and the words

**** COMMODORE 64 BASIC V2 ****

are printed along with the BYTES FREE message. For details of the

steps taken during the initialization of BASIC, see the entry for

58260 ($E394), the current cold start entry point.

40962-40963 $A002-$A003
Warm Start Vector

The warm start vector points to the address of the routine used to

reset BASIC after the STOP/RESTORE key combination is pressed.

This is the same address to which the BRK instruction is vectored.



40972-41041

When BASIC is entered through this vector, the program in memory

is not disturbed. For more information, see the entry for 58235

($E37B), the current warm start entry point.

40964-40971 $A004-$A00B
ASCII Text Characters CBMBASIC

The ASCII characters for the letters CBMBASIC are located here.

Possibly an identifier, this text is not referenced elsewhere in the

program.

40972-41041 $A00C-$A051 STMDSP
Statement Dispatch Vector Table

This table contains two-byte vectors, each of which points to an ad

dress which is one byte before the address of one of the routines

that perform a BASIC statement.

The statements are in token number order. When it comes time

to execute a statement, the NEWSTT routine at 42926 ($A7AE)

places this address-1 on the stack and jumps to the CHRGET rou

tine. The RTS instruction at the end of that routine causes the state

ment address to be pulled off the stack, incremented, and placed in

the Program Counter, just as if it were the actual return address.

This table is handy for locating the address of the routine that

performs a BASIC statement, so that the routine can be disassembled

and examined. To aid in this purpose, the table is reproduced below

with the actual target addresses, and not in the address-1 format

used by BASIC.

Token #

128 $80

129 $81

130 $82

131 $83

132 $84

133 $85

134 $86

135 $87

136 $88

137 $89

138 $8A

139 $8B

140 $8C
141 $8D

142 $8E

143 $90

144 $91

145 $92

Statement

END

FOR

NEXT

DATA

INPUT*

INPUT

DIM

READ

LET

GOTO

RUN

IF

RESTORE

GOSUB

RETURN

REM

STOP

ON

Routine Address

43057 $A831

42818 $A742

44318 $AD1E

43256 $A8F8

43941 $ABA5

43967 $ABBF

45185 $BO81

44038 $ACO6

43429 $A9A5

43168 $A8A0

43121 $A871

43304 $A928

43037 $A8D

43139 $A883

43218 $A8D2

43323 $A93B

43055 $A82F

43339 $A94B
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Token #

146 $93

147 $94

148 $95

149 $96

150 $97

151 $98

152 $99

153 $9A

154 $9B

155 $9C

156 $9D

157 $9E

158 $A0

159 $A1

160 $A2
161 $A3

162 $A4

Statement

WAIT

LOAD

SAVE

VERIFY

DEF

POKE

PRINT*

PRINT

CONT

LIST

CLR

CMD

SYS

OPEN

CLOSE

GET

NEW

Routine Address

47149 $B82D

57704 $E168

57686 $E156

57701 $E165

46003 $B3B3

47140 $B824

43648 $AA80

43680 $AAA0

43095 $A857

42652 $A69C

42590 $A65E

43654 $AA86

57642 $E12A

57790 $E1BE

57799 $E1C7

43899 $AB7B

42562 $A642

41042-41087 $A052-$A07F FUNDSP
TABLE

Function Dispatch Vector Table

This table contains two-byte vectors, each of which points to the ad

dress of one of the routines that perform a BASIC function.

A function is distinguished by a following argument, in paren

theses. The expression in the parentheses is first evaluated by the

routines which begin at 44446 ($AD9E). Then this table is used to

find the address of the function that corresponds to the token num

ber of the function to be executed.

The substance of this table, which can be used for locating the

addresses of these routines, is reproduced below. Note that the ad

dress for the USR function is 784 ($310),% which is the address of the
JMP instruction which precedes the user-supplied vector.

Token #

180 $B4

181 $B5

182 $B6

183 $B7

184, $B8

185 $B9

186 $BA

187 $BB

188 $BC

189 $BD

190 $BE

Function

SGN

INT

ABS

USR

FRE

POS

SQR

RND

LOG

EXP

COS

Routine Address

48185 $BC39

48332 $BCCC

48216 $BC58

784 $0310

45949 $B37D

45982 $B39E

49009 $BF71

57495 $E097

47594 $B9EA

49133 $BFED

57956 $E264
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191 $BF

192 $C0

193 $C1

194 $C2

195 $C3

196 $C4

197 $C5

198 $C6

199 $C7

200 $C8

201 $C9

202 $CA

SIN

TAN

ATN

PEEK

LEN

STR$

VAL

ASC

CHR$

LEFTS

RIGHTS

MID$

57963 $E26B

58036 $E2B4

58126 $E30E

47117 $B80D

46972 $B77C

46181 $B465

47021 $B7AD

46987 $B78B

46828 $B6EC

46848 $B700

46892 $B72C

46903 $B737

41088-41117 $A080-$A09D OPTAB
Operator Dispatch Vector Table

This table contains two-byte vectors, each of which points to an ad

dress which is one byte before the address of one of the routines

that perform a BASIC math operation.

For the reasoning behind the one-byte offset to the true address,

see the entry for location 40972 ($A00C). In addition, each entry has

a one-byte number which indicates the degree of precedence that

operation takes. Operations with a higher degree of precedence are

performed before operations of a lower degree (for example, in the

expression A=3+4*6, the 4*6 operation is performed first, and 3 is

added to the total). The order in which they are performed is:

1. Expressions in parentheses

2. Exponentiation (raising to a power, using the up-arrow symbol)

3. Negation of an expression (-5,-A)

4. Multiplication and division

5. Addition and subtraction

6. Relation tests (=, <>, <,>,<=,>= all have the same

precedence)

7. NOT (logical operation)

8. AND (logical operation)

9. OR (logical operation)

The substance of this table, which can be used to locate the address

es of the math routines, is given below. Note that the less than,

equal, and greater than operators all use the same routines, though

they have different token numbers.

Token #

170 $AA

171 $AB

172 $AC

Operator

+ (ADD)

-(SUBTRACT)

* (MULTIPLY)

Routine Address

47210 $B86A

47187 $B853

47659 $BA2B
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Token #

173 $AD

174 $AE

175 $AF

176 $B0

177 $B1

178 $B2

179 $B3

Operator

/ (DIVIDE)

t (EXPONENTIATE)

AND (LOGICAL AND)

OR (LOGICAL OR)

> (GREATER THAN)

= (EQUAL TO)

< (LESS THAN)

Routine Address

47890 $BB12

49019 $BF7B

45033 $AFE9

45030 $AFE6

49076 $BFB4

44756 $AED4

45078 $B016

41118-41373 $A09E-$A19D RESLST
List of Keywords

This table contains a complete list of the reserved BASIC keywords

(those combinations of ASCII text characters that cause BASIC to do

something). The ASCII text characters of these words are stored in

token number order. Bit 7 of the last letter of each word is set to in

dicate the end of the word (the last letter has 128 added to its true

ASCII value).

When the BASIC program text is stored, this list of words is

used to reduce any keywords to a single-byte value called a token.

The command PRINT, for example, is not stored in a program as

five ASCII bytes, but rather as the single token 153 ($99).

When the BASIC program is listed, this table is used to convert

these tokens back to ASCII text. The entries in this table consist of

the following:

1. The statements found in STMDSP at 40972 ($A00C), in the token

number order indicated (token numbers 128-162).

2. Some miscellaneous keywords which never begin a BASIC state

ment:

Token #

163 $A3

164 $A4

165 $A5

166 $A6

167 $A7

168 $A8

169 $A9

Keyword

TAB(

TO

FN

SPC(

THEN

NOT

STEP

3. The math operators found in OPTAB at 41088 ($A080), in the

token number order indicated (token numbers 170-179).
4. The functions found in FUNDSP at 41042 ($A052), in the token

number order indicated (token numbers 180-202).

5. The word GO (token number 203, $CB). This word was added to

the table to make the statement GO TO legal, to afford some com

patibility with the very first PET BASIC, which allowed spaces with

in keywords.
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41374-41767 $A19E-$A327 ERRTAB
ASCII Text of BASIC Error Messages

This table contains the ASCII text of all of the BASIC error mes

sages. As in the keyword table, Bit 7 of the last letter of each mes

sage is set to indicate the end of the message. Although we've all

seen some of them at one time or another, it's somewhat daunting to

see the whole list at once. The possible errors you can make include:

1. TOO MANY FILES

2. FILE OPEN

3. FILE NOT OPEN

4. FILE NOT FOUND

5. DEVICE NOT PRESENT

6. NOT INPUT FILE

7. NOT OUTPUT FILE

8. MISSING FILENAME

9. ILLEGAL DEVICE NUMBER

10. NEXT WITHOUT FOR

11. SYNTAX

12. RETURN WITHOUT GOSUB

13. OUT OF DATA

14. ILLEGAL QUANTITY

15. OVERFLOW

16. OUT OF MEMORY

17. UNDEF'D STATEMENT

18. BAD SUBSCRIPT

19. REDIM'D ARRAY

20. DIVISION BY ZERO

21. ILLEGAL DIRECT

22. TYPE MISMATCH

23. STRING TOO LONG

24. FILE DATA

25. FORMULA TOO COMPLEX

26. CAN'T CONTINUE

27. UNDEF'D FUNCTION

28. VERIFY

29. LOAD

Message number 30, BREAK, is located in the Miscellaneous Mes

sages table below.

41768-41828 $A328-$A364
Error Message Vector Table

This table contains the two-byte address of the first letter of each of

the 30 error messages.
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41829-41865 $A365-$A389
Miscellaneous Messages

The text of some of the other messages that BASIC can give you is

stored here. This text includes cursor movement characters, and each

message ends with a 0 character. The messages are:

1) Carriage return, OK, carriage return

2) Space, space, ERROR

3) Space, IN, space

4) Carriage return, linefeed, READY., carriage return, linefeed

5) Carriage return, linefeed, BREAK

41866-41911 $A38A-$A3B7 FNDFOR
Find FOR on Stack

This routine searches the stack for the blocks of data entries which

are stored by each FOR command. For more information on the data

that FOR places on the stack, see location 256 ($100).

41912 $A3B8 BLTU
Open a Space in Memory for a New Program Line or Variable

When a new nonarray variable is being created, or when a BASIC

program line is being added or replaced, this routine is used to make

room for the addition. It first checks to see if space is available, and

then moves the program text and/or variables to make room.

41979-41991 $A3FB-$A407 GETSTK
Check for Space on Stack

Before undertaking an operation that requires stack space, this rou

tine is used to check if there is enough room on the stack. If there is

not, an OUT OF MEMORY error is issued.

41992-42036 $A408-$A434 REASON
Check for Space in Memory

This is the subroutine that checks to see if there is enough space in

free memory for proposed additions such as new lines of program

text. If not, it calls for garbage collection, and if this still does not

produce enough space, an OUT OF MEMORY error is issued.

42037-42088 $A435-$A468 OMERR
OUT OF MEMORY Error Handler

This routine just sets the error message code, and falls through to

the general error handler.
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42039-42088 $A437-$A468 ERROR
General Error Handler

The error number is passed to this routine in the .X register, and it

displays the appropriate error message. Since this routine is vectored

through RAM at 768 ($300), you can divert this vector to the address

of your own routine, which would allow error trapping, or the addi

tion of new commands.

42089-42099 $A469-$A473
Display ERROR or Other Message

This portion of the routine tacks on the word ERROR to the mes

sage. This entry point is also used to print BREAK.

42100-42111 $A474-$A47F READY
Print READY

This routine displays the word READY, sets the Kernal message flag

to show that direct mode is operative, and falls through to the main

BASIC loop.

42112-42139 $A480-$A49B MAIN
Main Loop, Receives Input and Executes Immediately or Stores as

Program Line

This is the main BASIC program loop. It jumps through the RAM

vector at 770 ($302), so this routine can be diverted. The routine gets

a line of input from the keyboard, and checks for a line number. If

there is a line number, the program branches to the routine that

stores a line of program text. If there is no line number, it branches

to the routine that executes statements.

42140 $A49C MAIN1
Add or Replace a Line of Program Text

This routine calls subroutines to get the line number, tokenize

keywords, and then looks for a line with the same number.

If it finds a line with the same number, the routine deletes that

line by moving all higher program text and variables down to where

it started. The new line is then added. Since the CLR routine is

called, the value of all current program variables is lost.

42291 $A533 LINKPRG
Relink Lines of Tokenized Program Text

Each line of program text starts with a pointer to the address of the

next line (link address). This routine scans each line to the end

(which is marked with a 0), and calculates the new link address by

adding the offset to the address of the current statement.
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42336 $A560 INLIN
Input a Line to Buffer from Keyboard

This subroutine calls the Kernal CHRIN routine (61783, $F157) to

obtain a line of input from the current input device (usually the key

board). It stores the characters in the BASIC text input buffer at 512

($200) until a carriage return or 89 characters have been received.

The keyboard device will never return more than 80 characters be

fore a carriage return, but other devices can output a longer line. An

error will occur if the line goes over 88 characters.

42361 $A579 CRUNCH
Tokenize Line in Input Buffer

When a line of program text has been input into the BASIC text

buffer at 512 ($200), this routine goes through the line and changes

any keywords or their abbreviations, which do not appear in quotes,

into the corresponding token. This command is vectored through

RAM at 772 ($304), so it can be diverted in order to add new com

mands.

42515 $A613 FNDLIN
Search for Line Number

This routine searches through the program text, trying to match the

two-byte integer line number that is stored in 20-21 ($14-$15). If it is

found, 95-96 ($5F-$60) will be set as a pointer to the address of the

link field for that line, and the Carry flag will be set. If it is not

found, the Carry flag will be cleared.

42562 $A642 SCOTCH
Perform NEW

The NEW command stores two zeros in the link address of the first

program line to indicate the end of program, and sets the end of pro

gram pointer at 45-46 ($2D-$2E) to point to the byte past those

zeros. It continues through to the CLR command code.

42590 $A65E CLEAR
Perform CLR

The CLR command closes all I/O files with the Kernal CLALL rou

tine (62255, $F32F). It eliminates string variables by copying the end

of memory pointer at 55-56 ($37-$38) to the bottom of strings point

er at 51-52 ($33-$34). It also copies the pointer to end of BASIC pro

gram text at 49-50 ($31-$32) to the pointer to the start of nonarray

variables at 45-46 ($2D-$2E) and the start of array variables at 47-48

($2F-$30). This makes these variables unusable (although the con

tents of these areas are not actually erased). RESTORE is called to

set the data pointer back to the beginning, and the stack is cleared.
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42638 $A68E RUNC
Reset Pointer to Current Text Character to the Beginning of

Program Text

This routine resets the CHRGET pointer TXTPTR (122-123, $7A-

$7B) so that the next byte of text that the interpreter will read comes

from the beginning of program text.

42652 $A69C LIST
Perform LIST

This routine saves the range of lines to be printed in pointers at 95-

96 ($5F- $60) and 20-21 ($14-$15), and then prints them out, trans

lating any tokens back to their ASCII equivalent.

42775 $A717 OPLOP
Print BASIC Tokens as ASCII Characters

This is the part of the LIST routine that changes one-byte program

tokens back to their ASCII text characters. The routine is vectored

through RAM at 774 ($306), so it is possible to list out new com

mand words that you have added by changing this vector to detour

through your own routine.

42818 $A742 FOR
Perform FOR

FOR is performed mostly by saving the needed information for the

NEXT part of the command on the stack (see the entry for 256

($100) for details). This includes the TO termination value, so if the

upper limit is a variable, the current value of the variable will be

stored, and you cannot end the loop early by decreasing the value of

the TO variable within the loop (although you can end it early by

increasing the value of the FOR variable within the loop).

Also, since the TO expression is evaluated only once, at the time

FOR is performed, a statement such as FOR 1=1 TO 1+100 is valid.

The terminating value is not checked until NEXT is executed, so the

loop statements always execute at least once. The variable used by

FOR must be a nonarray floating point variable. Reusing the same

FOR variable used in a loop that is still active will cause the previous

FOR loop and all intervening loops to be cancelled.

42926 $A7AE NEWSTT
Set Up Next Statement for Execution

This routine tests for the STOP key, updates the pointer to the cur

rent line number, and positions the text pointer to read the begin

ning of the statement.
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42980 $A7E4 GONE
Read and Execute Next Statement

This is the routine which gets the next token and executes the state

ment. It is vectored through RAM at 776 ($308) to allow the addition

and execution of new statement tokens.

Since a statement must always start with a token or an implied

LET statement, this routine checks to see if the first character is a

valid token. If it is, the address is placed on the stack, so that a call

to CHRGET will return to the address of the code that executes the

statement (see the table of statement tokens at 40972 ($A00Q).

An invalid token will cause a SYNTAX ERROR. A character

whose ASCII value is less than 128 will cause LET to be executed.

43037 $A81D RESTOR
Perform RESTORE

The RESTORE command simply resets the DATA pointer at 65-66

($41-$42) from the start of BASIC pointer at 43-44 ($2B-$2C).

43052 $A82C
Test STOP Key for Break in Program

The Kernal STOP routine is called from here, and if the key is

pressed, the STOP (63213, $F6ED) command, below, is executed.

43055 $A82F STOP
Perform STOP

This entry point preserves the Carry flag (which is set to 1) and en

ters the END routine, which also performs STOP.

43057 $A831 END
Perform END

The current line number and text pointers are preserved for a possi

ble CONT command, and the READY prompt is printed. If a STOP

key break occurred, the BREAK message is printed first.

43095 $A857 CONT
Perform CONT

The CONT statement is performed by moving the saved pointers

back to the current statement and current text character pointers. If

the saved pointers cannot be retrieved, the CANT CONTINUE error
statement is printed.

43121 $A871 RUN
Perform RUN

RUN is executed by calling the Kernal SETMSG (65048, $FE18)
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routine to set the message flag for RUN mode and performing a CLR

to start the program. If a line followed RUN, a GOTO is executed

after the CLR.

43139 $A883 GOSUB
Perform GOSUB

This statement pushes the pointers to the current text character and

current line onto the stack, along with a constant 141 ($8D) which

identifies the block as saved GOSUB information to be used by

RETURN. The GOTO is called.

43168 $A8A0 GOTO
Perform GOTO

This statement scans BASIC for the target line number (the scan

starts with the current line if the target line number is higher, other

wise it starts with the first line). When the line is found, the pointers

to the current statement and text character are changed, so that the

target statement will be executed next.

43218 $A8D2 RETURN
Perform RETURN

The RETURN statement finds the saved GOSUB data on the stack,

and uses it to restore the pointers to the current line and current

character. This will cause execution to continue where it left off

when GOSUB was executed.

43256 $A8F8 DATA
Perform DATA

DATA uses the next subroutine to find the offset to the next state

ment, and adds the offset to the current pointers so that the next

statement will be executed. In effect, it skips the statement, much

like REM.

43270 $A906 DATAN
Search Program Text for the End of the Current BASIC Statement

This routine starts at the current byte of program text and searches

until it finds a zero character (line delimiter) or a colon character that

is not in quotes (statement delimiter).

43304 $A928 IF
Perform IF

IF uses the FRMEVL routine at 44446 ($AD9E) to reduce the expres

sion which follows to a single term. If the expression evaluates to 0

(false), the routine falls through to REM. If it is not 0, GOTO or the

statement following THEN is executed.
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43323 $A93B REM
Perform REM

The REM statement is executed by skipping all program text until

the beginning of the next statement. It is actually a part of the IF

statement, which continues for a few bytes after the REM part.

43339 $A94B ONGOTO
Perform ON GOTO or ON GOSUB

ON is performed by converting the argument to an integer, and then

skipping a number between commas each time that the integer is

decremented until the argument reaches 0. If a GOTO or GOSUB is

the next token, the current number between commas is used to exe

cute one of those statements. If the numbers between commas are

used up before the argument reaches 0, the statement has no effect,

and the next statement is executed.

43371 $A96B LINGET
Convert an ASCII Decimal Number to a Two-Byte Binary Line

Number

This subroutine is used by several statements to read a decimal num

ber, convert it to a two-byte integer line number (in low-byte, high-

byte format), and check that it is in the correct range of 0-63999.

43429 $A9A5 LET
Perform LET

The LET command causes variables to be created and initialized, or

to have a new value assigned. It handles all types of array or

nonarray variables: strings, floating point, integer, ST, TI, and TI$.

The routine is composed of several subroutines that evaluate the

variable, evaluate the assigned expression, check that the assigned

value is suitable for a variable of that type, and then assign a value

to the existing variable, or create a new variable.

43648 $AA80 PRINTN
Perform PRINT*

The PRINT# statement calls CMD and then closes the output chan

nel with the Kernal CLRCHN routine (62259, $F333).

43654 $AA86 CMD
Perform CMD

This routine calls the Kernal CHKOUT routine (62032, $F250), and

calls PRINT to send any included text to the device. Unlike PRINT#

it leaves the output channel open, so that output continues to go to

that device.
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43680 $AAA0 PRINT
Perform PRINT

The PRINT routine has many segments, which are required for the

various options which can be added to it: TAB, SPC, comma, semi

colon, variables, PI, ST, TI, and TI$. Eventually, all output is con

verted to strings, and the Kernal CHROUT routine is called to print

each character.

43806 $AB1E STROUT
Print Message from a String Whose Address Is in the .Y and .A

Registers

This part of the PRINT routine outputs a string whose address is in

the Accumulator (low byte) and .Y register (high byte), and which

ends in a zero byte.

43853 $AB4D DOAGIN
Error Message Formatting Routines for GET, INPUT, and READ

43899 $AB7B GET
Perform GET and GET#

The GET routine first makes sure that the program is not in direct

mode. It opens an input channel using the Kernal CHKIN routine

(61966, $F20E) if a number sign was added to make GET#. Then it

calls the common I/O routines in READ to get a single character,

and causes the input channel to be closed if one was opened.

43941 $ABA5 INPUTN
Perform INPUT*

This routine opens an input channel with the Kernal CHKIN routine,

calls INPUT, and then closes the channel with a CHKOUT routine

(62032, $F250). Extra data is discarded without an EXTRA

IGNORED message, and a FILE DATA ERROR message is issued

when the data type is not suitable for the type of variable used.

43967 $ABBF INPUT
Perform INPUT

The INPUT routine checks to make sure that direct mode is not ac

tive, prints prompts, receives a line of input from the device, and

jumps to the common code in READ that assigns the input to the

variables which were named.

44038 $AC06 READ
Perform READ

This routine includes the READ command and common code for
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GET and INPUT. The READ command locates the next piece of

DATA, reads the text, and converts it to the appropriate type of data

to be assigned to a numeric or string variable.

44284 $ACFC EXIGNT
ASCII Text for Input Error Messages

The text stored here is 7EXTRA IGNORED and 7REDO FROM

START, each followed by a carriage return and a zero byte.

44318 $AD1E NEXT
Perform NEXT

NEXT is executed by finding the appropriate FOR data on the stack,

adding the STEP value to the FOR variable, and comparing the re

sult to the TO value. If the loop is done, the stack entries for that

FOR command are removed from the stack. If the loop hasn't

reached its limit, the pointers to the current statement and text char

acter are updated from the FOR stack entry, which causes execution

to continue with the statement after the FOR statement.

44426 $AD8A FRMNUM
Evaluate a Numeric Expression and/or Check for Data Type

Mismatch

This routine can be called from different entry points to check the

current data against the desired data type (string or numeric) to see if

they match. If they don't, a TYPE MISMATCH error will result.

44446 $AD9E FRMEVL
Evaluate Expression

This is the beginning point of a very powerful group of subroutines

which are used extensively by BASIC.

The main purpose of these routines is to read in the ASCII text

of BASIC expressions, separate the operators and terms of the ex

pression, check them for errors, combine the individual terms by

performing the indicated operations, and obtain a single value which

the BASIC program can use.

This can be a very complex task, as expressions can be of the

string or numeric type, and can contain any type of variable, as well

as constants.

At the end, the flag which shows whether the resulting value is

string or numeric at 13 ($D) is set, and if the value is numeric, the

flag at 14 ($E) is set as well, to show if it is an integer or floating
point number.
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44675 $AE83 EVAL
Convert a Single Numeric Term from ASCII Text to a Floating

Point Number

This routine reduces a single arithmetic term which is part of an ex

pression from ASCII text to its floating point equivalent.

If the term is a constant, the routine sets the data type flag to

number, sets the text pointer to the first ASCII numeric character,

and jumps to the routine which converts the ASCII string to a float

ing point number.

If the term is a variable, the variable value is retrieved. If it is

the PI character, the value of PI is moved into the Floating Point

Accumulator.

This routine is vectored through RAM at 778 ($30A).

44712 $AEA8 PIVAL
PI Expressed as a Five-Byte Floating Point Number

The value of PI is stored here as a five-byte floating point number.

44785 $AEF1 PARCHK
Evaluate Expression Within Parentheses

This routine evaluates an expression within parentheses by calling

the syntax checking routines that look for opening and closing pa

rentheses, and then calling FRMEVL 44446 ($AD9E) for each level of

parentheses.

44791 $AEF7 CHKCLS
Check for and Skip Closing Parentheses

44794 $AEFA CHKOPN
Check for and Skip Opening Parentheses

44799 $AEFF CHKCOM
Check for and Skip Comma

This syntax checking device is the same in substance as the two

checking routines above. It is used when the next character should

be a comma. If it is not, a SYNTAX ERROR results. If it is, the char

acter is skipped and the next character is read. Any character can be

checked for and skipped this way by loading the character into the

Accumulator and entering this routine from SYNCHR at 44799

($AEFF).

44808 $AF08 SNERR
Print Syntax Error Message
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44843 $AF2B ISVAR
Get the Value of a Variable

44967 $AFA7 ISFUN
Dispatch and Evaluate a Function

If a BASIC function (like ASC("A")) is part of an expression, this

routine will use the function dispatch table at 42242 ($A502) to set

up the address of the proper function routine, and then branch to

that routine.

45030 $AFE6 OROP
Perform OR

The OR routine sets the .Y register as a flag, and falls through to the

AND routine, which also performs OR.

45033 $AFE9 ANDOP
Perform AND

The AND routine changes the parameters to two-byte integer values,

and performs the appropriate logical operation (AND or OR). A re

sult of 0 signifies false, while a result of -1 signifies true.

45078 $B016 DORE1
Perform Comparisons

This routine does the greater than (>), less than (<), and equal (=)

comparisons for floating point numbers and strings. The result in the

Floating Point Accumulator will be 0 if the comparison is false, and

-1 if it is true.

45185 $B081 DIM
Perform DIM

This command calls the next routine to create an array for every

variable dimensioned (since a statement can take the form DIM

A(12), B(13), C(14)...). If an array element is referenced before a DIM

statement (for example, A(3)=4), the array will be dimensioned to

10 (as if DIM A(10) were executed). Remember, DIMensioning an ar

ray to 10 really creates 11 elements (0-10). The 0 element should al

ways be considered in calculating the size to DIMension your array.

45195 $B08B PTRGET
Search for a Variable and Set It Up If It Is Not Found

This routine attempts to locate a variable by searching for its name

in the variable area. If an existing variable of that name cannot be

found, one is created with the NOTFNS routine below.
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45331 $B113
Check If .A Register Holds Alphabetic ASCII Character

This is part of the check for a valid variable name (it must start with

an alphabetic character).

45341 $B11D NOTFNS
Create a New BASIC Variable

This routine makes space for a seven-byte descriptor by moving the

variable storage area seven bytes higher in memory, and then creates

the descriptor.

45445 $B185 FINPTR
Return the Address of the Variable That Was Found or Created

This routine stores the address of the variable that was found or

created by the preceding routines in a pointer at 71-72 ($47-$48).

45460 $B194 ARYGET
Allocate Space for Array Descriptors

This routine allocates five bytes plus two bytes for every dimension

specified for the array descriptor.

45477 $B1A5 N32768
The Constant -32768 in Five-Byte Floating Point Format

This constant is used for range checking in the conversion of a float

ing point number to a signed integer (the minimum integer value is

-32768).

45482 $B1AA
Convert a Floating Point Number to a Signed Integer in .A and .Y

Registers

This subroutine calls AYINT, below, which checks to make sure that

the number in the Floating Point Accumulator is between 32767

and -32768, and converts it to a 16-bit signed interger in 100-101

($64-$65), high byte first. It leaves the high byte of the integer in the

Accumulator, and the low byte in the .Y register.

Although this routine does not appear to be referenced any

where in BASIC, the vector at locations 3-4 points to its address.

Presumably, it is provided for the benefit of the user who wishes to

pass parameters in a USR call, or the like.

45490 $B1B2 INTIDX
Input and Convert a Floating Point Subscript to a Positive Integer

This routine converts a floating point subscript value to an integer,

making sure first that it is positive.
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45503 $B1BF AYINT
Convert a Floating Point Number to a Signed Integer i^J

This subroutine first checks to make sure that the number in the

Floating Point Accumulator is between 32767 and -32768. If it is , }

not, an ILLEGAL QUANTITY error results. If it is, the routine con- ^
verts it to a 16-bit signed integer with the high byte in location 100

($64), and the low byte in location 101 ($65). \^J

45521 $B1D1 ISARY
Find Array Element or Create New Array in RAM ^

This routine searches for an array. If it is found, the subscript value

is checked to see if it is valid, and pointers to the array and element O
of the array are set. If it is not found, the array is created, and the

pointers set.

45637 $B245 BSERR
Print BAD SUBSCRIPT Error Message \J

45640 $B248 FCERR
Print ILLEGAL QUANTITY Error Message

45900 $B34C UMULT
Compute the Size of a Multidimensional Array

This routine calculates the size of a multidimensional array by multi

plying the dimensions.

45949 $B37D FRE
Perform FRE

The FRE function calls the garbage collection routine at 46374

($B526) to get rid of unused string text, and calculates the difference

between the bottom of string text and the top of array storage. It

then drops through to the following routine, which assumes that the

free memory value is a signed 16-bit integer, and converts it to float

ing point accordingly.

Of course, while the free memory space on the PET might have

always been 32767 or less (the maximum value of a signed integer),

such is definitely not the case on the 64. Because the conversion is

from a signed integer, any memory value over 32767 will be regard

ed as negative (the high bit is treated as a sign bit). Therefore, for

these higher values you must add twice the bit value of the high bit

(65536) in order to come up with the correct value. The expression

FRE (0)-65536*(FRE(0)<0) will always return the correct amount of

free memory.
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45969 $B391 GIVAYF
Convert 16-Bit Signed Integer to Floating Point

This routine treats the value in the Accumulator as the high byte of

a 16-bit signed integer, and the value in the .Y register as the low

byte, and converts the signed integer into a floating point number in

the Floating Point Accumulator.

The address of this routine is pointed to by the RAM vector at

5-6, and the routine can be used to return an argument from the

USR call in the Floating Point Accumulator.

45982 $B39E POS
Perform POS

The POS command calls the Kernal PLOT routine (58634, $E50A) to

get the position of the cursor on the logical line. What it really does

is an equivalent of PEEK (211). Remember, since we are dealing with

a logical line, this number can be over 39. The statement "THIS

SENTENCE IS LONGER THAN ONE PHYSICAL LINE";POS(X)

will return a value of 48 for the POS(X).

45990 $B3A6 ERRDIR
Check If the Program Is Running in Direct Mode, and If So Issue

an Error

This routine is called by statements that prohibit execution in direct

mode. It checks a flag that is set when a line without a line number

is entered, and causes an ILLEGAL DIRECT error if the flag is set.

46003 $B3B3 DEF
Perform DEF

DEF performs some syntax checking, and pushes five bytes onto the

stack: the first byte of the function statement, a two-byte pointer to

the dependent variable (the X in FN(X)), and the address of the first

character of the definition itself, where it resides in program text.

The DEF statement must fit on one line, but functions can be ex

tended by nesting them (having one function call another).

46049 $B3E1 GETFNM
Check DEF and FN Syntax

This routine checks to make sure that FN follows DEF, and that the

dependent variable has a valid floating point variable name. It calls

the routine to find or create a variable to get the pointer to its

address.
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46068 $B3F4 FNDOER
Perform FN

The FN evaluation is done by evaluating the FN argument (for ex

ample, FN(A+B*C/D)) and then getting the rest of the expression

from the text of the function definition statement. The function vari

able descriptor area is used as a work area, and the dependent vari

able is not disturbed (so that if the definition used FN(X), the value

of X will not be changed by the function call).

46181 $B465 STRD
Perform STR$

STR$ first checks to make sure that the parameter is a number, and

then calls the routines that convert floating point to ASCII and create

the pointers to a string constant.

46215 $B487 STRUT
Scan and Set Up Pointers to a String in Memory

This routine calculates the length of the string, and calls the routine

that allocates space in memory. It then saves the string, or creates a

pointer to its location in the BASIC text input buffer at 512 ($200).

46324 $B4F4 GETSPA
Allocate Space in Memory for String

The amount of space needed for a string is passed to this routine,

and the routine checks if there is that amount of space available in

free memory. If not, it does a garbage collection and tries again.

46374 $B526 GARBAG
String Garbage Collection

Whenever a string is changed in any way, the revised version of the

text is added to the bottom of the string text area, leaving the old

version higher up in memory, wasting space.

In order to reclaim that space, the descriptor for every string

whose text is in the string text area (rather than in the program text

area) must be searched to find the valid text that is highest in mem

ory. If that string is not as high as it could be, it is moved up to re

place any string that is no longer valid. Then all of the string de

scriptors must be searched again to find the next highest string and

move it up. This continues until every string that is in use has been

covered. After all have been moved up, the pointer to the bottom of

string text at 51-52 ($33-$34) is changed to show the new bottom

location.

If there are more than a few strings whose text is in the string

text storage area, rather than in the body of the program, scanning

every string as many times as there are strings can take an awful lot
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of time. The computer may seem as if it had died (the STOP key is

not even checked during the procedure).

The collection will take about as long whether there is any spare

space or not; the full collection will be done even if it is done imme

diately after the last collection. Although the increased memory ca

pacity of the 64 helps to forestall the need for garbage collection, a

large program with many string arrays may still experience lengthy

collection delays.

46525 $B5BD
Check for Most Eligible String to Collect

This part of the garbage collection routine checks to see if the cur

rent string is the highest in memory.

46598 $B606
Collect a String

This part of the garbage collection routine moves the string to high

memory and updates the descriptor to point to its new location.

46653 $B63D CAT
Concatenate Two Strings

This routine is used to add the text of one string onto the end of an

other (A$+B$). Error checking is done to see if the length of the

combined string is within range, the allocation routine is called to al

locate space, and the new string is built at the bottom of the string

text area.

46714 $B67A MOVINS
Move a String In Memory

This is the routine which is used to move a string to the bottom of

the string text area for the above routine. It is generally used as a

utility routine to move strings.

46755 $B6A3 FRESTR
Discard a Temporary String

This routine calls the following routine which clears an entry from

the temporary descriptor stack. If the descriptor was on the stack, it

exits after setting pointers to the string and its length. If it wasn't on

the temporary stack and is at the bottom of string text storage, the

pointer to the bottom is moved up to deallocate the string.

46811 $B6DB FRETMS
Remove an Entry from the String Descriptor Stack

If the descriptor of a currently valid string is the same as one of the

entries on the temporary string descriptor stack, the stack entry is

removed.
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46828 $B6EC CHRD
Perform CHR$

The CHR$ routine creates a descriptor on the temporary string stack

for the one-byte string whose value is specified in the command,

and sets a pointer to that string.

46848 $B700 LEFTD
Perform LEFT$

LEFT$ creates a temporary string descriptor for a new string which

contains the number of characters from the left side of the string that

is specified in the command.

46892 $B72C RIGHTD
Perform RIGHT$

RIGHTS manipulates its parameters so that the tail end of LEFTS can

be used to create a temporary string descriptor for a new string. This

new string contains the number of characters from the right side of

the string that is specified in the command.

46903 $B737 MIDD
Perform MID$

MID$ manipulates its parameters so that the tail end of LEFTS can

be used to create a temporary string descriptor for a new string. This

new string contains the number of characters from the position in

the middle of the string that is specified in the command.

46945 $B761 PREAM
Pull String Function Parameters from Stack for LEFTS, RIGHTS,

and MID$

This routine is used to obtain the first two parameters for all three of

these commands.

46972 $B77C LEN
Perform LEN

The LEN function is performed by obtaining the string length from

the descriptor and converting it to a floating point number.

46987 $B78B ASC
Perform ASC

This routine gets the first character of the string in the .Y register (if

it's not a null string). Then it calls the part of POS that converts a

one-byte integer in .Y to a floating point number.
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47003 $B79B GETBYTC
Input a Parameter Whose Value Is Between 0 and 255

This routine reads numeric ASCII program text, converts it to an in

teger, checks that it is in the range 0-255, and stores it in the .X reg

ister. This routine can be useful for reading parameters from a USR

statement or new commands.

47021 $B7AD VAL
Perform VAL

The VAL routine obtains the string pointer, and reads the string one

character at a time until an invalid character is found (ASCII num

bers, sign character, a single decimal point, exponent, and spaces are

all valid). Then the string is changed to floating point. If no valid

characters are found, a 0 is returned.

47083 $B7EB GETNUM
Get a 16-Bit Address Parameter and an 8-Bit Parameter (for POKE

and WAIT)

This routine gets the next numeric parameter from the current place

in program text. The routine evaluates it, checks that it is a positive

integer within the range 0-65535, and changes it from floating point

to a two-byte integer in 20-21 ($14-$15). It checks for and skips a

comma, then gets a one-byte integer parameter in the .X register.

The routine is used to get the parameters for POKE and WAIT.

47095 $B7F7 GETADR
Convert a Floating Point Number to an Unsigned Two-Byte

Integer

This routine checks the number in the Floating Point Accumulator to

make sure that it is a positive number less than 65536, and then

calls the subroutine which converts floating point to integer. It is

used to get address parameters, for commands such as PEEK.

47117 $B80D PEEK
Perform PEEK

PEEK reads the address parameter and converts it to a pointer. Then

it gets the byte pointed to into the .Y register, and calls the part of

POS that converts a single integer in .Y to a floating point number.

47140 $B824 POKE
Perform POKE

POKE gets a pointer to the address parameter, and stores the next

parameter there.
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47149 $B82D FUWAIT
Perform WAIT

WAIT gets an address parameter and an integer parameter to use as

a mask. WAIT then looks for an optional parameter to use as a pat

tern for the exclusive OR. Then, the address location is read, its

value is exclusive ORed with the optional pattern value (or 0 if there

is none). This value is ANDed with the mask value. The command

loops continuously until the result is not-zero.

The purpose of this command is to allow the program to watch

a location which can be changed by the system or by outside hard

ware (such as the software clock or keycode value locations).

The AND function lets you check if a bit changes from 0 to 1,

while the EOR function allows you to check if a bit changes from 1

to 0. For more information see the article "All About the Wait

Instruction,'7 by Louis Sander and Doug Ferguson, in COMPUTEl's

First Book of Commodore 64.

47177 $B849 FADDH
Add .5 to Contents of Floating Point Accumulator #1

47184 $B850 FSUB
Subtract FAC1 from a Number in Memory

This routine is used to subtract the Floating Point Accumulator from

a number in memory. It moves the number in memory into FAC2,

and falls through to the next routine.

47187 $B853 FSUBT
BASIC'S Subtraction Operation

This routine subtracts the contents of FAC2 from FAC1 by com

plementing its sign and adding.

47207 $B867 FADD
Add FAC1 to a Number in Memory

This routine is used to add the contents of the Floating Point Accu

mulator (FAC1) to a number in memory, by moving that number

into FAC2, and falling through to the next routine.

47210 $B86A FADDT
Perform BASIC'S Addition Operation

This routine adds the contents of FAC1 and FAC2 and stores the

results in FAC1.

47271 $B8A7 FADD4
Make the Result Negative If a Borrow Was Done

112



47705

47358 $B8FE NORMAL
Normalize Floating Point Accumulator #1

47431 $B947 NEGFAC
Replace FAC1 with Its 2's Complement

47486 $B97E OVERR
Print Overflow Error Message

47491 $B983 MULSHF
SHIFT Routine

47548 $B9BC FONE
Floating Point Constant with a Value of 1

The five-byte floating point representation of the number 1 is stored

here for use by the floating point routines. It is also used as the

default STEP value for the FOR statement.

47553 $B9C1 LOGCN2
Table of Floating Point Constants for the LOG function

This table of eight numeric constants in five-byte floating point

representation is used by the LOG function.

47594 $B9EA LOG
Perform LOG to Base E

The LOG to the base e of the number in FAC1 is performed here,

and the result left in FAC1.

47656 $BA28 FMULT
Multiply FAC1 by Value in Memory

This routine is used to multiply the Floating Point Accumulator

(FAC1) by a number in memory. It moves the number in memory

into FAC2, and falls through to the next routine.

47667 $BA33 FMULT
Multiply FAC1 with FAC2

This routine multiplies the contents of FAC1 by the contents of

FAC2 and stores the result in FAC1.

47705 $BA59 MLTPLY
Multiply a Byte Subroutine

This subroutine is used to repetitively add a mantissa byte of FAC2

to FAC1 the number of times specified in the .A

register.
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47756 $BA8C CONUPK
Move a Floating Point Number from Memory into FAC2

This subroutine loads FAC2 from the four-byte number (three man

tissa and one sign) pointed to by the .A and .Y registers.

47799 $BAB7 MULDIV
Add Exponent of FAC1 to Exponent of FAC2

47828 $BAD4 MLDVEX
Handle Underflow or Overflow

47842 $BAE2 MUL10
Multiply FAC1 by 10

This subroutine is called to help convert a floating point number to a

series of ASCII numerals.

47865 $BAF9 TENC
The Constant 10 in Five-Byte Floating Format

47870 $BAFE DIV10
Divide FAC1 by 10

47887 $BB0F FDIV
Divide a Number in Memory by FAC1

This number in memory is stored to FAC2, and this routine falls

through to the next.

47890 $BB12 FDIVT
Divide FAC2 by FAC1

This routine is used to divide the contents of FAC2 by the contents

of FAC1, with the result being stored in FAC1. A check for division

by 0 is made before dividing.

48034 $BBA2 MOVFM
Move a Floating Point Number from Memory to FAC1

This routine loads FAC1 with the five-byte floating point number

pointed to by the address stored in the Accumulator (low byte) and

the .Y register (high byte).

48071 $BBC7 MOV2F
Move a Floating Point Number from FAC1 to Memory

This routine is used to move a number from the Floating Point Accu

mulator (FAC1) to memory at either 92-96 ($5C-$60) or 87-91 ($57-

$5B), depending on the entry point to the routine.
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n 48124 $BBFC MOVFA
Move a Floating Point Number from FAC2 to FAC1

n 48140 $BC0C MOVAF
Round and Move a Floating Point Number from FAC1 to FAC2

— 48143 $BC0F MOVEF
Copy FAC1 to FAC2 Without Rounding

n 48155 $BCIB ROUND
Round Accumulator #1 by Adjusting the Rounding Byte

*^ If doubling the rounding byte at location 112 ($70) makes it greater
than 128, the value of FAC1 is increased by 1.

48171 $BC2B SIGN
*** Put the Sign of Accumulator #1 into .A Register

On exit from this routine the Accumulator will hold a 0 if FAC1 is 0,

a 1 if it is positive, and a value of 255 ($FF) if it is negative.

n 48185 $BC39 SGN
^ Perform SGN

The SGN routine calls the above routine to put the sign of FAC1

into .A, and then converts that value to a floating point number in

O FAC1.

n 48216 $BC58 ABS
Perform ABS

r^ The FAC1 sign byte at 102 ($66) is shifted right by this command, so

•' that the top bit is a 0 (positive).

n 48219 $BC5B FCOMP
Compare FAC1 to Memory

f-^ On entry to this routine, .A and .Y point to a five-byte floating point

number to be compared to FAC1. After the comparison, .A holds a 0

if the two are equal, a 1 if the value of FAC1 is greater than that in

f~) the memory location, and 255 ($FF) if the value in FAC1 is less than
that in the memory location.

48283 $BC9B Q.INT
^ Convert FAC1 into Integer Within FAC1

This routine converts the value in FAC1 into a four-byte signed inte

ger in 98-101 ($62-$65), with the most significant byte first.
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48332 $BCCC INT
Perform INT

This routine removes the fractional part of a floating point number

by calling the routine above to change it to an integer, and then

changing the integer back to floating point format.

48371 $BCF3 FIN
Convert an ASCII String to a Floating Point Number FAC1

This routine is called by VAL to evaluate and convert an ASCII

string to a floating point number.

48510 $BD7E FINLOG
Add Signed Integer to FAC1

This routine is used to add an ASCII digit that has been converted to

a signed integer to FAC1.

48563 $BDB3 N0999
This table of three floating point constants holds the values

99,999,999.9, 999,999,999.5 and 1,000,000,000. These values are

used in converting strings to floating point numbers.

48576 $BDC0 INPUT
Print IN Followed by a Line Number

48589 $BDCD LINPRT
Output a Number in ASCII Decimal Digits

This routine is used to output the line number for the routine above.

It converts the number whose high byte is in .A and whose low byte

is in .X to a floating point number. It also calls the routine below,

which converts the floating point number to an ASCII string.

48605 $BDDD FOUT
Convert Contents of FAC1 to ASCII String

This routine converts a floating point number to a string of ASCII

digits, and sets a pointer to the string in .A and .Y.

48913 $BF11 FHALF
The Constant Value 1/2 in Five-Byte Floating Point Notation

This constant is used for rounding and SQR.

48924 $BF1C FOUTBL
Powers of Minus Ten Constants Table

This table contains the powers of -10 expressed as four-byte floating

point numbers (that is, -1; +10; -100; +1000; -10,000; + 100,000;

-1,000,000; +10,000,000; and -100,000,000).
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48954 $BF3A FDCEND
Table of Constants for TI$ Conversion

This table contains the floating point representation of powers of -60

multiplied by 1 or 10. These constants are used for converting TI$ to

ASCII.

48978 $BF52
Unused area

This unused area is filled with bytes of 170 ($AA).

49009 $BF71 SGLR
Perform SQR

This routine moves the contents of FAC1 to FAC2, moves the con

stant 0.5 to FAC1, and falls through to the exponentiation routine.

49019 $BF7B FPWRT
Performs Exponentiation (Power Calculation Called for by

UPARROW)

This routine raises the value in FAC2 to the power in FAC1 and

leaves the result in FAC1.

49076 $BFB4 NEGOP
Perform NOT and >

This negates the Floating Point Accumulator by exclusive ORing the

sign byte with a constant of 255 ($FF). Zero is left unchanged. The

results of this command follow from the formula NOT X=-(X+1).

Therefore, if you NOT a statement that is true (-1), you get 0 (false).

49087 $BFBF EXPCON
Table of Constants for EXP and LOG in Five-Byte Floating Point

Format

These tables are used to calculate 2 to the N power.

49133 $BFED EXP
Perform EXP

This routine calculates the natural logarithm e (2.718281828...) raised

to the power in FAC1. The result is left in FAC1.

This routine is split between the BASIC ROM which ends at

49151 ($BFFF) and the Kernal ROM which begins at 57344 ($E000).

Therefore, a JMP $E000 instruction is tacked on to the end, which

makes the BASIC routines in the 64 Kernal ROM three bytes higher

in memory than the corresponding VIC-20 routines.
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4K Free RAM
49152-53247 ($COOO-$CFFF)
Locations 49152 to 53247 ($C000 to $CFFF) are free RAM. Since this

area is not contiguous with the BASIC program text RAM area, it is

not available for BASIC program or variable storage (it is not count

ed in the FRE(O) total).

This area is fully available for any other use, however, such as

storing machine language subroutines for use with BASIC, alternate

I/O drivers for parallel or IEEE devices, character graphics or sprite

data, etc.

This large free area is such a tempting spot for system additions

that many such applications may be competing for the same RAM

space. For example, the Universal Wedge DOS Support program that

adds easy access to the disk communications channel is usually load

ed at 52224 ($CC00). Programs that use that part of RAM will there

fore overwrite the DOS support program, with the result that they

may not run correctly, or even at all. Likewise, Simon's BASIC, the

extended language which Commodore has released on cartridge,

uses several locations in this range. Be aware of this potential prob

lem when you buy hardware additions that use this spot to hook

into the system.
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5324857343

VIC-II, SID, I/O
Devices, Color

RAM, and

Character ROM

53248-57343 <$DOOO-$DFFF)
This 4K block of memory is used for several key functions. Normal

ly, the 6510 microprocessor addresses the two Complex Interface

Adapter (CIA) Input/Output chips here, along with the VIC-II video

controller chip, the Sound Interface Device (SID) music synthesizer,

and the Color RAM.

Alternatively, the 6510 can address the character ROM here

(though normally only the VIC-II chip has access to it). Finally, there

is also 4K of RAM here, although to use it may require banking it in

only when necessary, as the I/O devices are needed for such niceties

as reading the keyboard, and updating the screen display.

It will appear from the map of the I/O devices below that many

of the locations are not accounted for. That is because these devices

tie up more addressing space than they actually use. Each of them

uses only a few addresses, mostly on the bit level.

The missing addresses either consist of images of the hardware

registers, or cannot be addressed in this configuration. In addition,

some address space is left open for the use of future hardware de

vices which might be plugged into the expansion port, like the

CP/Mcard.

As mentioned above, memory usage by these I/O devices is so

intensive that to work with them often requires that you turn indi

vidual bits on and off. Here is a quick reminder of how to manipu

late bits.

The bit values for each bit are:

Bit 0 = 1, Bit 1 = 2, Bit 2=4, Bit 3 = 8, Bit 4 = 16, Bit 5=32, Bit 6=64,

Bit 7=128.

To set a bit to 1 from BASIC, POKE address, PEEK (address) OR

Bitvalue. To reset a bit to 0 from BASIC, POKE address, PEEK (ad

dress) AND 255-Bitvalue).
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53248-53294 ($D000-$D02E)
VIC-II Chip Registers

The Video Interface Controller (VIC-II chip) is a specially designed

processor that is in charge of the 64's video display. It is this chip

which makes possible the 64's wide range of graphics capabilities.

The VIC-II chip's ability to address memory is independent of

the 6510 microprocessor. It can address only 16K at a time, and any

of the four blocks of 16K can be chosen for video memory. The sys

tem default is for it to use the first 16K.

All of the video display memory, character dot data, and sprite

shapes must be stored within the chosen 16K block. Locations

53248-53294 ($D000-$D02E) are registers which allow the user to

communicate with the VIC-II chip. Although for the most part they

can be written to and read like ordinary memory locations, their con

tents directly control the video display. Since many of these loca

tions work in close conjunction with others, a general overview of

some of the different graphics systems on the 64 is in order.

The most familiar type of graphics display is the ordinary text

that appears when you turn the machine on. The area of RAM

which is displayed on the screen is determined by the Video Matrix

Base Address Nybble of the VIC-II Memory Control Register (53272,

$D018). The address of the dot-data which is used to assign a shape

to each text character based on an 8 by 8 matrix of lit or unlit dots is

determined by the other half of the Memory Control Register at

53272 ($D018). More information on how the data is used to repre

sent the character shapes may be found at the alternate entry for

49152 ($C000), the Character Generator ROM.

Text character graphics may employ one of the two sets of text

and graphics characters in the Character Generator ROM, or the user

may substitute a completely different set of graphics or text charac

ters in RAM.

Normally, the text graphics screen uses a background color

which is common to all text characters, and that value is stored in

Background Color Register 0 (53281, $D021). The color of the frame

around the screen is determined by the Border Color Register at

53280 ($D020).

The color of each character is determined by one nybble of the

Color RAM which starts at 55296 ($D800). There are, however, two

variations which alter this scheme somewhat.

The first is called multicolor text mode, and is set by Bit 4 of

53270 ($D016). Instead of each bit selecting either the foreground or

the background color for each dot in the character, bit-pairs are used

to select one of four colors for each double-width dot. This results in

the horizontal resolution being cut to four dots across per character,

but allows two extra colors to be introduced from Background Color

Registers 1 and 2 (53282-53283, $D022-$D023).
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The other text mode is called Extended Background Color Mode.

In this mode, the foreground color is always selected by the Color

RAM. The background color depends on the actual screen code of

the character. In this mode, only the first 64 character shapes are

available, but each can have one of four different background colors.

The background color for each character is determined by its

screen code as follows:

1. If the screen code is from 0-63 (this includes the normal alpha-

numerics), the value in Background Color Register 0 (53281, #D021)

will determine the background color, as is usual.

2. Characters with codes 63-255 will have the same shape as the

corresponding character in the group with codes 0-63.

3. For characters with codes 63-127 (SHIFTed characters), the back

ground colors are determined by the value in Background Color Reg

ister 1 (53282, $D022).

4. The value in Background Color Register 2 (53283, $D023) is used

for characters with codes 128-191 (reversed alphanumerics).

5. For characters with codes 192-255, the value in Background Color

Register 3 (53284, $D024) is used to determine the background color.

In place of the normal text mode, a bitmap graphics mode is

also available by setting Bit 5 of location 53265 ($D011). In this

mode, each bit of data determines whether one dot on the screen

will be set to either the background color or foreground color. With

in an 8 by 8 dot area, the foreground and background colors may be

individually selected.

The bitmap area is 320 dots wide and 200 dots high. The area

which contains the graphics data, the bitmap is determined by the

Character Dot Data Base Address in the lower nybble of the VIC-II

Memory Control Register (53272, $D018). The Video Matrix Base

Address in the upper nybble, which normally determines which area

of memory will be displayed, instead determines where the color

memory for each 8 by 8 group of dots will be located.

The Color RAM is not used for high-resolution bitmap graphics.

But multicolor mode is also available for bitmap graphics, and it uses

the Color RAM to determine the foreground color of each dot.

As with multicolor text mode, the horizontal resolution is cut in

half (to 160 dots across), so that in addition to the foreground and

background colors, each dot can be one of two other colors as well.

This mode gets the value for the two extra colors from the two

nybbles of each byte of bitmap color memory, the location of which

is determined by the Video Matrix Base Address.

Multicolor text mode offers four colors, three of which will be

common to all characters, and one of which can be selected individ

ually. Multicolor bitmap mode offers a choice of four colors, three of
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which can be individually selected within an 8 by 8 dot area.

The 64 also contains an entirely separate graphics system,

whose character shapes, colors, and positions are derived and dis

played without any reference to the Video Matrix and Character

Dot-Data addresses. Best of all, these characters may be moved

quickly and easily to any position on the screen, greatly facilitating

games and animated graphics of all types. This system is known as

sprite graphics.

Sprite graphics takes its name from the graphics characters it

displays, each of which is called a sprite. There are eight sprites,

known as Sprites 0-7. Each sprite character is 24 dots wide by 21

dots high. This is about eight times as large as a regular text charac

ter, which is only 8 dots wide by 8 dots high.

A sprite takes its shape from 63 bytes of data in one of the 256

data blocks, each 64 bytes long, that can fit into the 16K space

which the VIC-II chip can address. The block currently assigned to

any given sprite is determined by the Sprite Data Pointers, which are

located at the last eight bytes of the screen memory area (the default

locations are 2040-2047, $7F8-$7FF).

The first Sprite Data Pointer determines the data block used for

the shape of Sprite 0, the second for the shape of Sprite 1, etc. The

number in the pointer times 64 equals the address of the first byte of

the data block within the VIC-II addressing range.

For example, using the default values for VIC-II addressing area

and screen memory, a value of 11 in location 2040 ($7F8) would

mean that the shape of Sprite 0 is determined by the data in the 63-

byte block starting at location 704 (11*64). It should be noted that it

is possible for more than one sprite to take its shape data from the

same block, so that only 64 bytes of data are required to create eight

sprites, each having the same shape.

The dot patterns of each sprite correspond to the bit patterns of

the sprite shape data. Each byte of shape data in memory consists of

a number from 0 to 255. This number can be represented by eight

binary digits of 0 or 1.

Each binary digit has a bit value that is two times greater than

the last. If the digit in the zero bit place is a 1, it has a value of 1

(we count bit places from 0 to 7). A 1 in the first bit place has a val

ue of 2, the second bit has a value of 4, the third has a value of 8,

the fourth has a value of 16, the fifth a value of 32, the sixth a value

of 64, and the seventh a value of 128.

By making all of the possible combinations of 0's and l's in all

eight bit places, and adding the bit values of every bit place that

contains a 1, we can represent every number from 0 to 255 as a se

ries of l's and 0's.

If you think of every 0 as a dot having the same color as the

background, and every 1 as a dot which is the color of the sprite,
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you can see how a series of bytes could be used to represent the

sprite shape.

Since each line of the sprite is 24 dots wide, it takes 3 bytes of

memory (24 bits) per line to portray its shape. Let's take a look at a

couple of sample sprite lines.

00000000 01111110 00000000 =0,126,0

As you can see, the first and last bytes are all O's, so nothing will be

displayed there. The middle byte has six l's, so it will be displayed

as a line six dots long. By adding the values of these six bits

(64+32+ 16+8+4+ 2), we get a byte value of 126. Let's try another

line.

00011111 11111111 11111000 =31,255,248

The first byte has five bits set to 1, having values of 16, 8, 4, 2, and

1, for a total value of 31. The second byte has all bits set to 1, so it

has the maximum value of 255. The third byte also has five bits set

to 1, having values of 128, 64, 32, 16, and 8, for a total of 248. The

result is that this line of sprite data will display a line that is 18 dots

long.

We can put these two kinds of lines together to show how a

large cross might be drawn using bytes of sprite data.

000000000000000000000000 =0,0,0

000000000000000000000000 =0,0,0

000000000111111000000000 = 0,126,0

000000000111111000000000 =0,126,0

000000000111111000000000 = 0,126,0

000000000111111000000000 =0,126,0

000000000111111000000000 =0,126,0

000000000111111000000000 = 0,126,0

000000000111111000000000 = 0,126,0

000111111111111111111000 =31,255,248

000111111111111111111000 =31,255,248

000111111111111111111000 =31,255,248

000000000111111000000000 =0,126,0

000000000111111000000000 =0,126,0

000000000111111000000000 =0,126,0

000000000111111000000000 =0,126,0

000000000111111000000000 = 0,126,0

000000000111111000000000 = 0,126,0

000000000111111000000000 =0,126,0

000000000000000000000000 =0,0,0

000000000000000000000000 =0,0,0

The 63 numbers, displayed three per line opposite the bit patterns

they represent, are the values that would have to be put in the sprite

shape data area in order to display this cross using sprite graphics.
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Even after the sprite shape data has been placed in memory,

and the Sprite Data Pointer has been set to display that block of data

bytes as the sprite shape, there are still several steps that must be

taken in order to display the sprite on the screen.

The proper bit of the Sprite Display Enable Register at 53269

($D015) must be set to 1 in order to turn on the sprite display. A

horizontal and vertical screen position must be selected for the sprite

by means of the horizontal and vertical position registers (53248-

53264, $D000-$D010). Finally, the color value of the sprite should

be placed in the appropriate Sprite Color Register (53287-53294,

$D027-$D02E).

Once you have the sprite on the screen, animation is fairly sim

ple to achieve. Moving the sprite is as easy as changing the values in

the sprite position registers. Changing the sprite shape can be accom

plished by merely changing the Sprite Data Pointer to point to

another block of shape data in memory.

There are also some optional sprite graphics features available

which enhance its flexibility. Sprite expand registers allow you to

make each sprite twice as wide as normal, twice as tall, or both. Col

lision detection registers let you know when a sprite shape overlaps

a regular text character or bitmap dot, or if two sprites are touching.

If a sprite is positioned in the same place on the screen as a text

character or bitmap dot, a Priority Register allows you to choose

whether the sprite or the normal graphics will be displayed. This en

ables three-dimensional effects by letting you choose whether the

sprite goes in front of or behind other objects on the screen.

Finally, any sprite may be selected for multicolor display, using

the register at location 53276 ($D01C). In this mode, as in multicolor

text and bitmap modes, pairs of bits are used to determine the color

of each double-width dot. The possible color values which may be

selected are those of Background Color Register 0, the Sprite Color

Register, or the two color values in the Sprite Multicolor Registers at

53285-53286 ($D025-$D026).

Location Range: 53248-53264 ($D000-
$D010)

Sprite Horizontal and Vertical Position Registers

These locations determine the horizontal and vertical position at

which each sprite will be displayed on the screen. Each sprite has its

own horizontal and vertical position register. In addition, all of the

sprites share a common register which is used to extend the range of

horizontal positions.

Vertical positions for each sprite range from 0 to 255, and these

indicate the vertical position of the top line of the sprite's 21-line

length. Since there are only 200 visible scan lines in the screen dis-
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play, some of these vertical positions will result in the sprite being

partially or wholly offscreen.

The visible viewing area starts at line 50 and extends to line

249. Therefore, any sprite whose vertical position is 29 ($1D) or less

will be completely above the visible picture. At vertical position 30

($1E), the bottom line of the sprite display becomes visible at the top

of the screen. At vertical position 50 ($32), the entire sprite becomes

visible at the top of the screen. At position 230 ($E6), the bottom

line of the sprite is lost from view off the bottom of the screen, and

at vertical position 250 ($FA), the entire sprite disappears from view

off the bottom edge of the screen.

Horizontal positioning is somewhat trickier, because the visible

display area is 320 dots wide, and one eight-bit register can hold

only 256 position values. Therefore, an additional register is needed

to hold the ninth bit of each sprite's horizontal position.

Each sprite is assigned a single bit in the Most Significant Bit of

Horizontal Position Register (MSB Register) at 53264 ($D010). If that

bit is set to 1, the value 256 is added to the horizontal position. This

extends the range of possible horizontal positions to 511.

In order to set a sprite's horizontal position, you must make sure

that both the values in the horizontal position register and the MSB

Register are correct. For example, if you wish to set the horizontal

position of Sprite 5 to a value of 30, you must place a value of 30 in

the Sprite 5 Horizontal Position Register (POKE 53258,30 will do it

from BASIC), and you must also clear Bit 5 of the MSB Register

(POKE 53264,PEEK(53264)AND(255-16)). If you forget the MSB reg

ister, and Bit 5 is set to 1, you will end up with position 286 instead

of 30.
The horizontal position value indicates the position of the

leftmost dot of the sprite's 24-dot width. The visible display is re

stricted to the 320 dot positions between positions 24 and 344. At

position 0 the whole sprite is past the left edge of the visible screen.

At position 1 the rightmost dot enters the display area, and at posi

tion 24 ($18) the entire sprite is displayed on screen. At position 321

($141) the rightmost dot goes past the right edge of the visible dis

play area, and at position 344 ($158) the whole sprite has moved out

of sight, off the right edge of the screen.

These registers are all initialized to 0 at power-up.

53248 $D000 SPOX
Sprite 0 Horizontal Position

53249 $D001 SPOY
Sprite 0 Vertical Position
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53250 $D002
Sprite 1 Horizontal Position

SP1X

53251 $D003 SP1Y
Sprite 1 Vertical Position

53252 $D004 SP2X
Sprite 2 Horizontal Position

53253 $D005 SP2Y
Sprite 2 Vertical Position

53254 $D006 SP3X
Sprite 3 Horizontal Position

53255 $D007 SP3Y
Sprite 3 Vertical Position

53256 $D008 SP4X
Sprite 4 Horizontal Position

53257 $D009 SP4Y
Sprite 4 Vertical Position

53258 $D00A SP5X
Sprite 5 Horizontal Position

53259 $D00B SP5Y
Sprite 5 Vertical Position

53260 $D00C SP6X
Sprite 6 Horizontal Position

53261 $D00D SP6Y
Sprite 6 Vertical Position

53262 $D00E SP7X
Sprite 7 Horizontal Position

53263 $D00F SP7Y
Sprite 7 Vertical Position

53264 $D010 MSIGX
Most Significant Bits of Sprites 0-7 Horizontal Positions

Bit 0: Most significant bit of Sprite 0 horizontal position

Bit 1: Most significant bit of Sprite 1 horizontal position
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Bit 2: Most significant bit of Sprite 2 horizontal position

Bit 3: Most significant bit of Sprite 3 horizontal position

Bit 4: Most significant bit of Sprite 4 horizontal position

Bit 5: Most significant bit of Sprite 5 horizontal position

Bit 6: Most significant bit of Sprite 6 horizontal position

Bit 7: Most significant bit of Sprite 7 horizontal position

Setting one of these bits to 1 adds 256 to the horizontal position of

the corresponding sprite. Resetting one of these bits to 0 restricts the

horizontal position of the corresponding sprite to a value of 255 or

less.

53265 $D011 SCROLY
Vertical Fine Scrolling and Control Register

Bits 0-2: Fine scroll display vertically by X scan lines (0-7)

Bit 3: Select a 24-row or 25-row text display (1 = 25 rows, 0 = 24 rows)

Bit 4: Blank the entire screen to the same color as the border

(0=blank)

Bit 5: Enable bitmap graphics mode (1= enable)

Bit 6: Enable extended color text mode (1=enable)

Bit 7: High bit (Bit 8) of raster compare register at 53266 ($D012)

This is one of the two important multifunction control registers on

the VIC-II chip. Its default value is 155, which sets the high bit of

the raster compare to 1, selects a 25-row text display, disables the

blanking feature, and uses a vertical scrolling offset of three scan

lines.

Bits 0-2. These bits control vertical fine scrolling of the screen

display. This feature allows you to move the entire text display

smoothly up and down, enabling the display area to act as a win

dow, scrolling over a larger text or character graphics display.

Since each row of text is eight scan lines high, if you simply

move each line of text up one row, the characters travel an appre

ciable distance each time they move, which gives the motion a jerky

quality. This is called coarse scrolling, and you can see an example

of it when LISTing a program that is too long to fit on the screen all

at one time.

By placing a number from 1 to 7 into these three bits, you can

move the whole screen display down by from 1 to 7 dot spaces.

Stepping through values 1 to 7 allows you to smoothly make the

transition from having a character appear in one row on the screen

to having it appear in the next row. To demonstrate this, type in the

following sample program, LIST it, and RUN.

10 FOR 1= 1 TO 50:FOR J=0 TO 7

20 POKE 53265, (PEEK(53265)AND248) OR J:NEXTJ,I

30 FOR 1= 1 TO 50:FOR J=7 TO 0 STEP-1

40 POKE 53265, (PEEK(53265)AND248) OR J:NEXTJ,I
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As you can see, after the display has moved seven dot positions up

or down, it starts over at its original position. In order to continue

the scroll, you must do a coarse scroll every time the value of the

scroll bits goes from 7 to 0, or from 0 to 7. This is accomplished by

moving the display data for each line by 40 bytes in either direction,

overwriting the data for the last line, and introducing a line of data

at the opposite end of screen memory to replace it. Obviously, only

a machine language program can move all of these lines quickly

enough to maintain the effect of smooth motion. The following

BASIC program, however, will give you an idea of what vertical fine

scrolling is like.

10 POKE 53281,0:PRINTCHR$(5);CHR$(147)

20 FORI=1 TO 22:

30 PRINTTAB(15)CHR$(145)"{12 SPACES}":POKE 53265,P

EEK(53265)AND248

40 WAIT53265,128:PRINTTAB(15)"IIM FALLING"

50 FOR J=l TO 7

60 POKE53265,(PEEK(53265)AND248)+J

70 FORK=1TO50

80 NEXT K,J,I:RUN

Bit 3. This bit register allows you to select either the normal 25-

line text display (by setting the bit to 1), or a shortened 24-row dis

play (by resetting that bit to 0). This shortened display is created by

extending the border to overlap the top or bottom row. The charac

ters in these rows are still there; they are just covered up.

The shortened display is designed to aid vertical fine scrolling. It

covers up the line into which new screen data is introduced, so that

the viewer does not see the new data being moved into place.

However, unlike the register at 53270 ($D016) which shortens

the screen by one character space on either side to aid horizontal

scrolling in either direction, this register can blank only one vertical

line at a time. In order to compensate, it blanks the top line when

the three scroll bits in this register are set to 0, and shifts the

blanking one scan line at a time as the value of these bits increases.

Thus the bottom line is totally blanked when these bits are set to 7.

Bit 4. Bit 4 of this register controls the screen blanking feature.

When this bit is set to 0, no data can be displayed on the screen. In

stead, the whole screen will be filled with the color of the frame

(which is controlled by the Border Color Register at 53280, $D020).

Screen blanking is useful because of the way in which the VIC-

11 chip interacts with the 6510 microprocessor. Since the VIC-II and

the 6510 both have to address the same memory, they must share

the system data bus. Sharing the data bus means that they must take

turns whenever they want to address memory.

The VIC-II chip was designed so that it fetches most of the data

it needs during the part of the cycle in which the 6510 is not using
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the data bus. But certain operations, such as reading the 40 screen

codes needed for each line of text from video memory, or fetching

sprite data, require that the VIC-II chip get data at a faster rate than

is possible just by using the off half of the 6510 cycle.

Thus, the VIC-II chip must delay the 6510 for a short amount of

time while it is using the data bus to gather display information for

text or bitmap graphics, and must delay it a little more if sprites are

also enabled. When you set the screen blanking bit to 0, these delays

are eliminated, and the 6510 processor is allowed to run at its full

speed. This speeds up any processing task a little.

To demonstrate this, run the following short program. As you

will see, leaving the screen on makes the processor run about 7 per

cent slower than when you turn it off. If you perform the same tim

ing test on the VIC-20, you will find that it runs at the same speed

with its screen on as the 64 does with its screen off. And the same

test on a PET will run substantially slower.

10 PRINT CHR$(147);TAB(13);"TIMING TEST":PRINT:TI$

="000000":GOTO 30

20 FOR 1=1 TO 10000:NEXT I:RETURN

30 GOSUB 20:DISPLAY=TI

40 POKE 53265,11:TI$="000000"

50 GOSUB 20:NOSCREEN=TI:POKE 53265,27

60 PRINT "THE LOOP TOOK";DISPLAY;" JIFFIES"

70 PRINT "WITH NO SCREEN BLANKING":PRINT

80 PRINT "THE LOOP TOOK";NOSCREEN;" JIFFIES"

90 PRINT "WITH SCREEN BLANKING":PRINT

100 PRINT "SCREEN BLANKING MADE THE PROCESSOR"

110 PRINT "GO";DISPLAY/NOSCREEN*100-100;"PERCENT F

ASTER"

The above explanation accounts for the screen being turned off dur

ing tape read and write operations. The timing of these operations is

rather critical, and would be affected by even the relatively small de

lay caused by the video chip. It also explains why the 64 has diffi

culty loading programs from an unmodified 1540 Disk Drive, since

the 1540 was set up to transfer data from the VIC-20, which does

not have to contend with these slight delays.

If you turn off the 64 display with a POKE 53265,PEEK(53265)

AND 239, you will be able to load programs correctly from an old

1540 drive. The new 1541 drive transfers data at a slightly slower

rate in the default setting, and can be set from software to transfer it

at the higher rate for the VIC-20.

Bit 5. Setting Bit 5 of this register to 1 enables the bitmap

graphics mode. In this mode, the screen area is broken down into

64,000 separate dots of light, 320 dots across by 200 dots high. Each

dot corresponds to one bit of display memory. If the bit is set to 1,

the dot will be displayed in the foreground color. If the bit is reset to
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0, it will be displayed in the background color. This allows the dis

play of high-resolution graphics images for games, charts, and

graphs, etc.

Bitmapping is a common technique for implementing high-

resolution graphics on a microcomputer. There are some features of

the Commodore system which are unusual, however.

Most systems display screen memory sequentially; that is, the

first byte controls the display of the first eight dots in the upper-left

corner of the screen, the second byte controls the eight dots to the

right of that, etc. In the Commodore system, display memory is laid

out more along the lines of how character graphics dot-data is

arranged.

The first byte controls the row of eight dots in the top-left cor

ner of the screen, but the next byte controls the eight dots below

that, and so on until the ninth byte. The ninth byte controls the

eight dots directly to the right of those controlled by the first byte of

display memory. It is exactly the same as if the screen were filled

with 1000 programmable characters, with display memory taking the

place of the character dot-data.

The 64's bitmap graphics mode also resembles character graph

ics in that the foreground color of the dots is set by a color map (al

though it does not use the Color RAM for this purpose). Four bits of

each byte of this color memory control the foreground color of one

of these eight-byte groups of display memory (which form an 8 by 8

grid of 64 dots). Unlike character graphics, however, the other four

bits control the background color that will be seen in the eight-byte

display group where a bit has a value of 0.

Setting up a bitmap graphics screen is somewhat more compli

cated than just setting this register bit to 1. You must first choose a

location for the display memory area, and for the color memory area.

The display memory area will be 8192 bytes long (8000 of which are

actually used for the display) and can occupy only the first or the

second half of the 16K space which the VIC-II chip can address.

Each byte of bitmap graphics color memory uses four bits for

the background color as well as four bits for the foreground color.

Therefore, the Color RAM nybbles at 55296 ($D800), which are

wired for four bits only, cannot be used. Another RAM location must

therefore be found for color memory.

This color memory area will take up IK (1000 bytes of which

are actually used to control the foreground and background colors of

the dots), and must be in the opposite half of VIC-II memory as the

display data. Since bitmap graphics require so much memory for the

display, you may want to select a different 16K bank for VIC-II

memory (see the discussion of things to consider in selecting a VIC-

II memory bank at location 56576, $DD00).

To keep things simple, however, let's assume that you have
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selected to use the default bank of VIC-II memory, which is the first

16K. You would have to select locations 8192-16383 ($2000-$3FFF)

for screen memory, because the VIC-II chip sees an image of the

character ROM in the first half of the 16K block (at locations 4096-

8191, $1000-$lFFF). Color memory could be placed at the default lo

cation of text display memory, at 1024-2047 ($400-$7FF). Placement

of bitmap display and color memory is controlled by the VIC Mem

ory Control Register at 53272 ($D018).

When in bitmap mode, the lower four bits of this register, which

normally control the base address of character dot-data, now control

the location of the 8K bitmap. Only Bit 3 is significant. If it is set to

1, the graphics display memory will be in the second 8K of VIC-II

memory (in this case, starting at 8192, $2000). If that bit contains a

0, the first 8K will be used for the bitmap. The upper four bits of this

register, which normally control the location of the Video Display

Matrix, are used in bitmap mode to establish the location of the color

map within the VIC-II address space. These four bits can hold a

number from 0 to 15, which indicates on which IK boundary the

color map begins. For example, if color memory began at 1024 (IK),

the value of these four bits would be 0001.

Once the bitmap mode has been selected, and the screen and

color memory areas set up, you must establish a method for turning

each individual dot on and off. The conventional method for identi

fying each dot is to assign it a horizontal (X) position coordinate and

a vertical (Y) coordinate.

Horizontal position values will range from 0 to 319, where dot 0

is at the extreme left-hand side of the screen, and dot 319 at the ex

treme right. Vertical positions will range from 0 to 199, where dot 0

is on the top line, and dot 199 on the bottom line.

Because of the unusual layout of bitmap screen data on the 64,

it is fairly easy to transfer text characters to a bitmap screen, but it is

somewhat awkward finding the bit which affects the screen dot hav

ing a given X-Y coordinate. First, you must find the byte BY in

which the bit resides, and then you must POKE a value into that

byte which turns the desired bit on or off. Given that the horizontal

position of the dot is stored in the variable X, its vertical position is

in the variable Y, and the base address of the bitmap area is in the

variable BASE, you can find the desired byte with the formula:

BY=BASE+ 40*(Y AND 248)+(Y AND 7)+(X AND 504)

To turn on the desired dot,

POKE BY, PEEK(BY) OR (21t(NOTX AND 7))

To turn the dot off,

POKE BY, PEEK(BY) AND (255-2 It (NOTX AND 7))

The exponentiation function takes a lot of time. To speed things up,
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an array can be created, each of whose elements corresponds to a

power of two.

FOR 1=0 TO 7: BIT(I)=2 t I:NEXT

After this is done, the expression 2 t (I) can be replaced by BI(I).

The following sample program illustrates the bit-graphics concepts

explained above, and serves as a summary of that information.

10 FOR 1=0 TO 7:BI(I)=2tl:NEXT: REM SET UP ARRAY O

F POWERS OF 2 (BIT VALUES)

20 BASE=2*4096:POKE53272,PEEK(53272)OR8:REM PUT BI

T MAP AT 8192

30 POKE53265,PEEK(53265)OR32:REM ENTER BIT MAP MOD

E

40 A$="":FOR 1=1 TO 37 :A$=A$+MCM :NEXT:PRINT CHR$(1

9);
50 FOR 1=1 TO 27:PRINTA$;:NEXT:POKE 2023,PEEK(2022

): REM SET COLOR MAP

60 A$=IIM:FOR 1=1 TO 128:A$=A$+M@" :NEXT:FOR 1=32 TO

63 STEP 2

70 POKE 648,I:PRINT CHR$(19);A$;A$;A$;A$:NEXT:POKE

648,4:REM CLEAR HI-RES SCREEN

80 FORY=0TO199STEP,5:REM FROM THE TOP OF THE SCREE

N TO THE BOTTOM

90 X=INT(160+40*SIN(Y/10)): REM SINE WAVE SHAPE

100 BY=BASE+40*(Y AND 248)+(Y AND 7)+(X AND 504):

{SPACE}REM FIND HI-RES BYTE

110 POKEBY,PEEK(BY)OR(BI(NOT X AND 7)):NEXT Y: REM

POKE IN BIT VALUE

120 GOTO 120: REM LET IT STAY ON SCREEN

As you can see, using BASIC to draw in bit-graphics mode is some

what slow and tedious. Machine language is much more suitable for

bit-graphics plotting. For a program that lets you replace some

BASIC commands with hi-res drawing commands, see the article

"Hi-Res Graphics Made Simple," by Paul F. Schatz, in COMPUTEl's

First Book of Commodore 64 Sound and Graphics.

There is a slightly lower resolution bitmap graphics mode avail

able which offers up to four colors per 8 by 8 dot matrix. To enable

this mode, you must set the multicolor bit (Bit 4 of 53270, $D016)

while in bitmap graphics mode. For more information on this mode,

see the entry for the multicolor enable bit.

Bit 6. This bit of this register enables extended background color

mode. This mode lets you select the background color of each text

character, as well as its foreground color. It is able to increase the

number of background colors displayed, by reducing the number of

characters that can be shown on the screen.

Normally, 256 character shapes can be displayed on the screen.
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You can see them either by using the PRINT statement or by

POKEing a display code from 0 to 255 into screen memory. If the

POKEing method is used, you must also POKE a color code from 0

to 15 into color memory (for example, if you POKE 1024,1, and

POKE 55296,1, a white A appears in the top-left corner of the

screen).

The background color of the screen is determined by Back

ground Color Register 0, and you can change this color by POKEing

a new value to that register, which is located at 53281 ($D021). For

example, POKE 53281,0 creates a black background.

When extended background color mode is activated, however,

only the first 64 shapes found in the table of screen display codes

can be displayed on the screen. This group includes the letters of the

alphabet, numerals, and punctuation marks. If you try to print on

the screen a character having a higher display code, the shape dis

played will be from the first group of 64, but that character's back

ground color will no longer be determined by the register at 53281

($D021). Instead, it will be determined by one of the other back

ground color registers.

When in extended background color mode, characters having

display codes 64-127 will take their background color from register

1, at location 53282 ($D022). These characters include various

SHIFTed graphics characters. Those with codes 128-191 will have

their background colors determined by register 2, at 53283 ($D023).

These include the reversed numbers, letters, and punctuation marks.

Finally, characters with codes 192-255 will use register 3, at 53284

($D024). These are the reversed graphics characters.

Let's try an experiment to see just how this works. First, we will

put the codes for four different letters in screen memory:

FOR 1=0 TO 3: POKE 1230+(I*8),I*64 + l: POKE 55502+(I*8),l:

NEXT

Four white letters should appear on the screen, an A, a shifted A, a

reversed A, and a reversed, shifted A, all on a blue background.

Next, we will put colors in the other background color registers:

POKE 53282,0: POKE 53283,2: POKE 53284,5

This sets these registers to black, red, and green, respectively. Final

ly, we will activate extended color mode by setting Bit 6 of the VIC-

II register at location 53265 to a 1. The BASIC statement that turns

this mode on is:

POKE 53265, PEEK(53265) OR 64

Notice that two things happened. First, all of the letters took on the

same shape, that of the letter A. Second, each took on the back

ground color of a different color register. To get things back to nor

mal, turn off extended color mode with this statement:
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POKE 53265, PEEK(53265) AND 191

Extended color mode can be a very useful enhancement for your text

displays. It allows the creation of windows. These windows, because

of their different background colors, make different bodies of text

stand out as visually distinct from one another. For example, a text

adventure program could have one window to display the player's

current location, one to show an inventory of possessions, and one

to accept commands for the next move.

In this mode the background color of these windows can be

changed instantly, just by POKEing a new value to the color register.

This technique lends itself to some dramatic effects. A window can

be flashed to draw attention to a particular message at certain times.

And varying the foreground color can make either the window or

the message vanish and reappear later.

There are, however, a couple of problems involved in using

these windows. The character shape that you want to use might not

have a screen code of less than 64. In that case, the only solution is

to define your own character set, with the shape you want in one of

the first 64 characters.

Another problem is that characters within a PRINT statement in

your program listing are not always going to look the same on the

screen. Having to figure out what letter to print to get the number 4

with a certain background color can be very inconvenient. The easi

est solution to this problem is to have a subroutine do the translation

for you. Since letters will appear normally in window 1, and window

3 characters are simply window 1 characters reversed, you will only

have problems with characters in windows 2 and 4. To convert these

characters, put your message into A$, and use the following sub

routine:

500 B$="":FOR 1=1 TO LEN(A$):B=ASC(MID$(A$,I,1))

510 B=B+32:IF B<96 THEN B=B+96

520 B$=B$+CHR$(B):NEXT I:RETURN

This subroutine converts each letter to its ASCII equivalent, adds the

proper offset, and converts it back to part of the new string, B$.

When the conversion is complete, B$ will hold the characters neces

sary to PRINT that message in window 2. For window 4, PRINT

CHR$(18); B$; CHR$(146). This will turn reverse video on before

printing the string, and turn it off afterwards.

A practical demonstration of the technique for setting up win

dows is given in the sample program below. The program sets up

three windows, and shows them flashing, appearing and dis

appearing.

5 DIM RO$(25):RO$(0)=CHR$(19):FOR 1=1 TO 24:RO$(I)

=RO$(1-1)+CHR$(17):NEXT
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10 POKE 53265,PEEK(53265) OR 64

20 POKE 53280,0: POKE 53281,0:POKE 53282,1:POKE 53

283,2:POKE 53284,13

25 OP$=CHR$(160):FOR 1=1 TO 4:OP$=OP$+OP$:NEXTI:PR

INTCHR$(147);RO$(3);

30 FOR 1=1 TO10:PRINTTAB(1);CHR$(18);"{15 SPACES}11

;TAB(23);OP$:NEXT

40 PRINT CHR$(146):PRINT:PRINT:FOR 1=1 TO 4:PRINTO

P$ 7 OP$ 7 OP$ 7 OP$ 7 OP$ 7:NEXTI

50 PRINT RO$(5)7CHR$(5)7CHR$(18)7TAB(2)7HA RED WIN

DOW"

60 PRINT CHR$(18)7TAB(2)7"COULD BE USED"

70 PRINT CHR$(18)7TAB(2)7"FOR ERROR"

80 PRINT CHR$(18)7TAB(2)7"MESSAGES"

100 A$="A GREEN WINDOW":GOSUB 300:PRINT RO$(5)7CHR

$(144)7CHR$(18)7TAB(24)7B$

110 A$="COULD BE USED":GOSUB 300:PRINTTAB(24);CHR$

(18)7B$

120 A$="TO GIVE":GOSUB 300:PRINTTAB(24);CHR$(18)?B

$
130 A$="INSTRUCTIONS":GOSUB 300:PRINTTAB(24);CHR$(

18)7B$

140 PRINT CHR$(31);RO$(19);

150 A$="{2 SPACES}WHILE THE MAIN WINDOW COULD BE U

SED":GOSUB300:PRINT B$

160 A$="{2 SPACESjFOR ACCEPTING COMMANDS.":GOSUB30

0:PRINT B$

170 FOR 1=1 TO 5000:NEXT I: POKE 53284,0

180 FOR 1=1 TO 5:FOR J=l TO 300:NEXT J-.POKE 53282,

15

190 FOR J=l TO 300:NEXT J:POKE 53282,1

200 NEXT I: POKE 53283,-2*(PEEK(53283)=240):POKE 5

3284,-13*(PEEK(53284)=240)

210 GOTO 180

300 B$="":FOR I=1TOLEN(A$):B=ASC(MID$(A$,I,1))

310 B=B+32:IFB<96THENB=B+96

320 B$=B$+CHR$(B):NEXTI:RETURN

Bit 7. Bit 7 of this register is the high-order bit (Bit 8) of the Raster

Compare register at 53266 ($D012). Even though it is located here, it

functions as part of that register (see the description below for more

information on the Raster Compare register).

Machine language programmers should note that its position

here at Bit 7 allows testing this bit with the Negative flag. Since scan

lines above number 256 are all off the screen, this provides an easy

way to delay changing the graphics display until the scan is in the

vertical blanking interval and the display is no longer being drawn:

LOOP LDA $D011

BPL LOOP
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Sprites should always be moved when the raster is scanning off

screen, because if they are moved while they are being scanned,

their shapes waver slightly.

The BASIC equivalent of the program fragment above is the

statement WAIT 53265,128, but BASIC is usually not fast enough to

execute the next statement while still in the blanking interval.

53266 $D012 RASTER
Read Current Raster Scan Line/Write Line to Compare for Raster

IRQ

The Raster Compare register has two different functions, depending

on whether you are reading from it or writing to it. When this reg

ister is read, it tells which screen line the electron beam is currently

scanning.

There are 262 horizontal lines which make up the American

(NTSC) standard display screen (312 lines in the European or PAL

standard screen). Every one of these lines is scanned and updated 60

times per second. Only 200 of these lines (numbers 50-249) are part

of the visible display.

It is sometimes helpful to know just what line is being scanned,

because changing screen graphics on a particular line while that line

is being scanned may cause a slight disruption on the screen. By

reading this register, it is possible for a machine language program to

wait until the scan is off the bottom of the screen before changing

the graphics display.

It is even possible for a machine language program to read this

register, and change the screen display when a certain scan line is

reached. The program below uses this technique to change the back

ground color in midscreen, in order to show all 256 combinations of

foreground and background text colors at once.

40 FOR 1=49152 TO 49188: READ A: POKE I,A: NEXT:PO

KE 53280,11

50 PRINT CHR$(147):FOR 1=1024 TO 1+1000: POKE If16

0: POKE 1+54272,11:NEXTI

60 FOR 1=0 TO 15: FOR J=0 TO 15

70 P=1196+(40*I)+J: POKE P,J+1: POKE P+54272,J: NE

XT J,I

80 PRINT TAB(15)CHR$(5)"COLOR CHART":FOR 1=1 TO 19

:PRINT:NEXT

85 PRINTMTHIS CHART SHOWS ALL COMBINATIONS OF

{3 SPACES}"
86 PRINT "FOREGROUND AND BACKGROUND COLORS.

{6 SPACES}"
87 PRINT "FOREGROUND INCREASES FROM LEFT TO RIGHT"

88 PRINT "BACKGROUND INCREASES FROM TOP TO BOTTOM"
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90 SYS 12*4096

100 DATA 169,90,133,251,169,0f141,33,208,162,15,12

0,173,17,208,48

105 DATA 251,173,18,208
110 DATA 197,251,208,249,238,33,208,24,105,8,133,2

51,202,16,233,48,219

Writing to this register designates the comparison value for the Ras

ter Compare Interrupt. When that interrupt is enabled, a maskable

interrupt request will be issued every time the electron beam scan

reaches the scan line whose number was written here. This is a

much more flexible technique for changing the display in midscreen

than reading this register as the sample program above does. That

technique requires that the program continuously watch the Raster

Register, while the interrupt method will call the program when the

time is right to act. For more information on raster interrupts, see the

entry for the Interrupt Mask Register, 53274 ($D01A).

It is very important to remember that this register requires nine

bits, and that this location holds only eight of those bits (the ninth is

Bit 7 of 53265, $D011). If you forget to read or write to the ninth bit,

your results could be in error by a factor of 256.

For example, some early programs written to demonstrate the

raster interrupt took for granted that the ninth bit of this register

would be set to 0 on power-up. When a later version of the Kernal

changed this initial value to a 1, their interrupt routines, which were

supposed to set the raster interrupt to occur at scan line number 150,

ended up setting it for line number 406 instead. Since the scan line

numbers do not go up that high, no interrupt request was ever is

sued and the program did not work.

Location Range: 53267-53268 ($D013-
$D014)

Light Pen Registers

A light pen is an input device that can be plugged into joystick Con

trol Port #1. It is shaped like a pen and has a light-sensitive device

at its tip that causes the trigger switch of the joystick port to close at

the moment the electron beam that updates the screen display

strikes it. The VIC-II chip keeps track of where the beam is when

that happens, and records the corresponding horizontal and vertical

screen coordinates in the registers at these locations.

A program can read the position at which the light pen is held

up to the screen. The values in these registers are updated once ev

ery screen frame (60 times per second). Once the switch is closed

and a value written to these registers, the registers are latched, and

subsequent switch closings during the same screen frame will not be

recorded.
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A given light pen may not be entirely accurate (and the operator

may not have a steady hand). It is probably wise to average the

positions returned from a number of samplings, particularly when

using a machine language driver.

53267 $D013 LPENX
Light Pen Horizontal Position

This location holds the horizontal position of the light pen. Since

there are only eight bits available (which give a range of 256 values)

for 320 possible horizontal screen positions, the value here is accu

rate only to every second dot position. The number here will range

from 0 to 160 and must be multiplied by 2 in order to get a close ap

proximation of the actual horizontal dot position of the light pen.

53268 $D014 LPENY
Light Pen Vertical Position

This location holds the vertical position of the light pen. Since there

are only 200 visible scan lines on the screen, the value in this regis

ter corresponds exactly to the current raster scan line.

53269 $D015 SPENA
Sprite Enable Register

Bit 0: Enable Sprite 0 (1=sprite is on, 0=sprite is off)

Bit 1: Enable Sprite 1 (1=sprite is on, 0=sprite is off)

Bit 2: Enable Sprite 2 (l=sprite is on, 0=sprite is off)

Bit 3: Enable Sprite 3 (1=sprite is on, 0=sprite is off)

Bit 4: Enable Sprite 4 (1=sprite is on, 0=sprite is off)

Bit 5: Enable Sprite 5 (1=sprite is on, 0=sprite is off)

Bit 6: Enable Sprite 6 (1=sprite is on, 0=sprite is off)

Bit 7: Enable Sprite 7 (1=sprite is on, 0=sprite is off)

In order for any sprite to be displayed, the corresponding bit in this

register must be set to 1 (the default for this location is 0). Of course,

just setting this bit alone will not guarantee that a sprite will be

shown on the screen. The Sprite Data Pointer must indicate a data

area that holds some values other than 0. The Sprite Color Register

must also contain a value other than that of the background color. In

addition, the Sprite Horizontal and Vertical Position Registers must

be set for positions that lie within the visible screen range in order

for a sprite to appear on screen.

53270 $D016 SCROLX
Horizontal Fine Scrolling and Control Register

Bits 0-2: Fine scroll display horizontally by X dot positions (0-7)

Bit 3: Select a 38-column or 40-column text display (1=40 columns,

0=38 columns)
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Bit 4: Enable multicolor text or multicolor bitmap mode (1=multi

color on, 0=multicolor off)

Bit 5: Video chip reset (0=normal operation, 1=video completely

off)

Bits 6-7: Unused

This is one of the two important multifunction control registers on

the VIC-II chip. On power-up, it is set to a default value of 8, which

means that the VIC chip Reset line is set for a normal display, Multi

color Mode is disabled, a 40-column text display is selected, and no

horizontal fine-scroll offset is used.

Bits 0-2. The first three bits of this chip control vertical fine

scrolling of the screen display. This feature allows you to smoothly

move the entire text display back and forth, enabling the display

area to act as a window, scrolling over a larger text or character

graphics display.

Since each text character is eight dots wide, moving each charac

ter over one whole character position (known as coarse scrolling) is a

relatively big jump, and the motion looks jerky. By placing a number

from 1 to 7 into these three bits, you can move the whole screen dis

play from one to seven dot spaces to the right.

Stepping through values 1 to 7 allows you to smoothly make

the transition from having a character appear at one screen column

to having it appear at the next one over. To demonstrate this, type in

the following program, LIST, and RUN it.

10 FOR 1= 1 TO 50:FOR J=0 TO 7

20 POKE 53270, (PEEK(53270)AND248) OR J:NEXTJ,I

30 FOR 1= 1 TO 50:FOR J=7 TO 0 STEP-1

40 POKE 53270, (PEEK(53270)AND248) OR J:NEXTJ,I

As you can see, after the display has moved over seven dots, it starts

over at its original position. In order to continue the scroll, you must

do a coarse scroll every time the value of the scroll bits goes from 7

to 0, or from 0 to 7. This is accomplished by moving each byte of

display data on each line over one position, overwriting the last

character, and introducing a new byte of data on the opposite end of

the screen line to replace it.

Obviously, only a machine language program can move all of

these bytes quickly enough to maintain the effect of smooth motion.

The following BASIC program, however, will give you an idea of

what the combination of fine and coarse scrolling looks like.

10 POKE 53281,0:PRINTCHR$(5);CHR$(147):FOR 1=1 TO

{SPACE}5:PRINTCHR$(17):NEXT

20 FORI=1 TO 30

30 PRINT TAB(I-1)"{UP}{10 SPACES}{UP}"

40 WAIT53265,128:POKE53270,PEEK(53270)AND248:PRINT

TAB(I)MAWAY WE GO"
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50 FOR J=l TO 7

60 POKE53270,(PEEK(53270)AND248)+J

70 FORK=1TO30-I

80 NEXT KrJ,I:RUN

Changing the value of the three horizontal scroll bits will affect the

entire screen display. If you wish to scroll only a portion of the

screen, you will have to use raster interrupts (see 53274, $D01A be

low) to establish a scroll zone, change the value of these scroll bits

only when that zone is being displayed, and change it back to 0

afterward.

Bit 3. Bit 3 of this register allows you to cover up the first and

last columns of the screen display with the border. Since the viewers

cannot see the characters there, they will not be able to see you in

sert a new character on the end of the line when you do coarse

scrolling (see explanation of Bits 0-2 above).

Setting this bit to 1 enables the normal 40-column display,

while resetting it to 0 changes the display to 38 columns. This is

purely a cosmetic aid, and it is not necessary to change the screen to

the smaller size to use the scrolling feature.

Bit 4. This bit selects multicolor graphics. The effect of setting

this bit to 1 depends on whether or not the bitmap graphics mode is

also enabled.

If you are not in bitmap mode, and you select multicolor text

character mode by setting this bit to 1, characters with a color nybble

whose value is less than 8 are displayed normally. There will be one

background color and one foreground color. But each dot of a char

acter with a color nybble whose value is over 7 can have any one of

four different colors.

The two colors in Background Color Registers 1 and 2 (53282-3,

$D022-3) are available in addition to the colors supplied by the Color

RAM. The price of these extra colors is a reduction in horizontal

resolution. Instead of each bit controlling one dot, in multicolor

mode a pair of bits control the color of a larger dot. Thus, each char

acter is eight dots across; multicolor characters are only four double-

width dots across. A bit pattern of 00 will put the color from Back

ground Color Register 0 into that dot. A pattern of 11 will light it

with the color from the lower three bits of color RAM. Patterns of 01

and 10 will select the colors from Background Color Registers 1 and

2, respectively, for the double-width dot.

You can see the effect that setting this bit has by typing in the

following BASIC command line:

POKE 53270,PEEK(53270)OR16: PRINT CHR$(149)"THIS IS

MULTICOLOR MODE"

It is obvious from this example that the normal set of text characters

was not made to be used in multicolor mode. In order to take advan-
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tage of this mode, you will need to design custom four-color charac

ters. For more information, see the alternate entry for 53248

($D000), the Character Generator ROM.

If the multicolor and bitmap enable bits are both set to 1, the re

sult is multicolor bitmap mode. As in multicolor text mode, pairs of

graphics data bits are used to set each dot in a 4 by 8 matrix to one

of four colors. This results in a reduction of the horizontal resolution

to 160 double-wide dots across. But while text multicolor mode al

lows only one of the four colors to be set individually for each 4 by

8 dot area, bitmap multicolor mode allows up to three different col

ors to be individually selected in each 4 by 8 dot area. The source of

the dot color for each bit-pair combination is shown below:

00 Background Color Register 0 (53281, $D021)

01 Upper four bits of Video Matrix

10 Lower four bits of Video Matrix

11 Color RAM nybble (area starts at 55296, $D800)

The fact that bit-pairs are used in this mode changes the strategy for

plotting somewhat. In order to find the byte BY in which the desired

bit-pair resides, you must multiply the horizontal position X, which

has a value of 0-159, by 2, and then use the same formula as for

hi-res bitmap mode.

Given that the horizontal position (0-159) of the dot is stored in

the variable X, its vertical position is in the variable Y, and the base

address of the bitmap area is in the variable BASE. You can find the

desired byte with the formula:

BY=BASE+(Y AND 248)*40+ (Y AND 7)+(2*X AND 504)

Setting the desired bit-pair will depend on what color you choose.

First, you must set up an array of bit masks.

CA(0)= l:CA(l)=4:CA(2)= 16:CA(3)=64

To turn on the desired dot, select a color CO from 0 ]to 3 (represent

ing the color selected by the corresponding bit pattern) and execute

the following statement:

BI=(NOT X AND 3): POKE BY, PEEK(BY) AND (NOT 3*CA(BI))

OR (CO*CA(BI))

The following program will demonstrate this technique:

10 CA(0)=1:CA(1)=4:CA(2)=16:CA(3)=64:REM ARRAY FOR
BIT PAIRS

20 BASE=2*4096:POKE53272,PEEK(53272)OR8:REM PUT BI
T MAP AT 8192

30 POKE53265,PEEK(53265)OR32:POKE 53270,PEEK(53270
)OR16:REM MULTI-COLOR BIT MAP

40 A$="":FOR 1=1 TO 37:A$=A$+"CH:NEXT:PRINT CHR$(1

9);
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50 FOR 1=1 TO 27:PRINTA$;:NEXT:POKE 2023,PEEK(2022

): REM SET COLOR MAP

60 A$="":FOR 1=1 TO 128:A$=A$+"@M:NEXT:FOR 1=32 TO
63 STEP 2

70 POKE648,I:PRINTCHR$(19);A$;A$;A$;A$:NEXT:POKE64
8,4:REM CLR HI-RES SCREEN

80 FOR CO=1 TO3: FORY=0TO199STEP.5:REM FROM THE TO

P OF THE SCREEN TO THE BOTTOM

90 X=INT(10*CO+50+15*SIN(CO*45+Y/l0)): REM SINE WA
VE SHAPE

100 BY=BASE+40*(Y AND 248)+(Y AND 7)+(X*2 AND 504)

: REM FIND HI-RES BYTE

110 BI=(NOT X AND 3):POKE BY,PEEK(BY) AND (NOT 3*C

A(BI)) OR (CO*CA(BI))

120 NEXT Y,CO

130 GOTO 130: REM LET IT STAY ON SCREEN

Bit 5. Bit 5 controls the VIC-II chip Reset line. Setting this bit to

1 will completely stop the video chip from operating. On older 64s,

the screen will go black. It should always be set to 0 to insure nor

mal operation of the chip.

Bits 6 and 7. These bits are not used.

53271 $D017 YXPAND
Sprite Vertical Expansion Register

Bit 0: Expand Sprite 0 vertically (1=double height, 0=normal

height)

Bit 1: Expand Sprite 1 vertically (1=double height, 0=normal

height)

Bit 2: Expand Sprite 2 vertically (1=double height, 0=normal

height)

Bit 3: Expand Sprite 3 vertically (1=double height, 0=normal

height)

Bit 4: Expand Sprite 4 vertically (1= double height, 0=normal

height)

Bit 5: Expand Sprite 5 vertically (1= double height, 0=normal

height)

Bit 6: Expand Sprite 6 vertically (1=double height, 0=normal

height)

Bit 7: Expand Sprite 7 vertically (1= double height, 0=normal

height)

This register can be used to double the height of any sprite. When

the bit in this register that corresponds to a particular sprite is set to

1, each dot of the 24 by 21 sprite dot matrix will become two raster

scan lines high instead of one.
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53272 $D018 VMCSB
VIC-II Chip Memory Control Register

Bit 0: Unused

Bits 1-3: Text character dot-data base address within VIC-II address

space

Bits 4-7: Video matrix base address within VIC-II address space

This register affects virtually all graphics operations. It determines

the base address of two very important data areas, the Video Matrix,

and the Character Dot-Data area.

Bits 1-3. These bits are used to set the location of the Character

Dot-Data area. This area is where the data that defines the shapes of

the characters displayed on the screen is stored (for more informa

tion on character shape data, see the alternate entry for location

53248 ($D000), the Character Generator ROM).

Bits 1-3 can represent any even number from 0 to 14. That

number stands for the even IK offset of the character data area from

the beginning of VIC-II memory. For example, if these bits are all set

to 0, it means that character memory occupies the first 2K of VIC-II

memory. If they equal 2, the data area starts 2*1K (2*1024) or 2048

bytes from the beginning of VIC memory.

The default value of this nybble is 4. This sets the address of the

Character Dot-Data area to 4096 ($1000), which is the starting ad

dress of where the VIC-II chip addresses the Character ROM. The

normal character set which contains uppercase and graphics occupies

the first 2K of that ROM. The alternate character set which contains

both upper- and lowercase letters uses the second 2K. Therefore, to

shift to the alternate character set, you must change the value of this

nybble to 6, with a POKE 53272,PEEK(53272)OR2. To change it

back, POKE 53272,PEEK(53272)AND253.

In bitmap mode, the lower nybble controls the location of the

bitmap screen data. Since this data area can start only at an offset of

0 or 8K from the beginning of VIC-II memory, only Bit 3 of the

Memory Control Register is significant in bitmap mode. If Bit 3 holds

a 0, the offset is 0, and if it holds a 1, the offset is 8192 (8K).

Bits 4-7. This nybble determines the starting address of the Vid

eo Matrix area. This is the 1024-byte area of memory which contains

the screen codes for the text characters that are displayed on the

screen. In addition, the last eight bytes of this area are used as point

ers which designate which 64-byte block of VIC-II memory will be

used as shape data for each sprite.

These four bits can represent numbers from 0 to 15. These num

bers stand for the offset (in IK increments) from the beginning of

VIC-II memory to the Video Matrix.

For example, the default bit pattern is 0001. This indicates that

the Video Matrix is offset by IK from the beginning of VIC-II memory,
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the normal starting place for screen memory. Remember, though,

the bit value of this number will be 16 times what the bit pattern in

dicates, because we are dealing with Bits 4-7. Therefore, the 0001 in

the upper nybble has a value of 16.

Using this register, we can move the start of screen memory to

any IK boundary within the 16K VIC-II memory area. Just changing

this register, however, is not enough if you want to use the BASIC

line editor. The editor looks to location 648 ($288) to determine

where to print screen characters.

If you just change the location of the Video Matrix without

changing the value in 648, BASIC will continue to print characters in

the memory area starting at 1024, even though that area is no longer

being displayed. The result is that you will not be able to see any

thing that you type in on the keyboard. To fix this, you must POKE

648 with the page number of the starting address of screen memory

(page number=location/256). Remember, the actual starting address

of screen memory depends not only on the offset from the beginning

of VIC-II memory in the register, but also on which bank of 16K is

used for VIC-II memory.

For example, if the screen area starts 1024 bytes from the begin

ning of VIC-II memory, and the video chip is using Bank 2 (32768-

49151), the actual starting address of screen memory is

32768 + 1024=33792 ($8400). For examples of how to change the

video memory area, and of how to relocate the screen, see the entry

for 56576 ($DD00).

53273 $D019 VICIRCL
VIC Interrupt Flag Register

Bit 0: Flag: Is the Raster Compare a possible source of an IRQ?

(l-yes)

Bit 1: Flag: Is a collision between a sprite and the normal graphics

display a possible source of an IRQ? (l=yes)

Bit 2: Flag: Is a collision between two sprites a possible source of an

IRQ?(l=yes)

Bit 3: Flag: Is the light pen trigger a possible source of an IRQ?

(l-yes)

Bits 4-6: Not used

Bit 7: Flag: Is there any VIC-II chip IRQ source which could cause an

IRQ?(l=yes)

The VIC-II chip is capable of generating a maskable request (IRQ)

when certain conditions relating to the video display are fulfilled.

Briefly, the conditions that can cause a VIC-II chip IRQ are:

1. The line number of the current screen line being scanned by

the raster is the same as the line number value written to the Raster

Register (53266, $D012).
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2. A sprite is positioned at the same location where normal

graphics data are being displayed.

3. Two sprites are positioned so that they are touching.

4. The light sensor on the light pen has been struck by the ras

ter beam, causing the fire button switch on joystick Control Port #1

to close (pressing the joystick fire button can have the same effect).

When one of these conditions is met, the corresponding bit in

this status register is set to 1 and latched. That means that as long as

the corresponding enable bit in the VIC IRQ Mask register is set to

1, an IRQ request will be generated, and any subsequent fulfillment

of the same condition will be ignored until the latch is cleared.

This allows you to preserve multiple interrupt requests if more

than one of the interrupt conditions is met at a time. In order to

keep an IRQ source from generating another request after it has been

serviced, and to enable subsequent interrupt conditions to be detect

ed, the interrupt service routine must write a 1 to the corresponding

bit. This will clear the latch for that bit. The default value written to

this register is 15, which clears all interrupts.

There is only one IRQ vector that points to the address of the

routine that will be executed when an IRQ interrupt occurs. The

same routine will therefore be executed regardless of the source of

the interrupt. This status register provides a method for that routine

to check what the source of the IRQ was, so that the routine can

take appropriate action. First, the routine can check Bit 7. Anytime

that any of the other bits in the status register is set to 1, Bit 7 will

also be set. Therefore, if that bit holds a 1, you know that the VIC-II

chip requested an IRQ (the two CIA chips which are the other

sources of IRQ interrupts can be checked in a similar manner). Once

it has been determined that the VIC chip is responsible for the IRQ,

the individual bits can be tested to see which of the IRQ conditions

have been met.

For more information, and a sample VIC IRQ program, see the

following entry.

53274 $D01A IRQ.MSK
IRQ Mask Register

Bit 0: Enable Raster Compare IRQ (l=interrupt enabled)

Bit 1: Enable IRQ to occur when sprite collides with display of

normal graphics data (l=interrupt enabled)

Bit 2: Enable IRQ to occur when two sprites collide (l=interrupt

enabled)

Bit 3: Enable light pen to trigger an IRQ (l=interrupt enabled)

Bits 4-7: Not used

This register is used to enable an IRQ request to occur when one of

the VIC-II chip interrupt conditions is met. In order to understand
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what that means, and how these interrupts can extend the range of

options available to a programmer, you must first understand what

an interrupt is.

An interrupt is a signal given to the microprocessor (the brains

of the computer) that tells it to stop executing its machine language

program (for example, BASIC), and to work on another program for

a short time, perhaps only a fraction of a second. After finishing the

interrupt program, the computer goes back to executing the main

program, just as if there had never been a detour.

Bit 0. This bit enables the Raster Compare IRQ. The conditions

for this IRQ are met when the raster scan reaches the video line in

dicated by the value written to the Raster Register at 53266 ($D012)

and Bit 7 of 53265 ($D011). Again, an explanation of the terminol

ogy is in order.

In the normal TV display, a beam of electrons (raster) scans the

screen, starting in the top-left corner, and moving in a straight line

to the right, lighting up appropriate parts of the screen line on the

way. When it comes to the right edge, the beam moves down a line,

and starts again from the left. There are 262 such lines that are

scanned by the 64 display, 200 of which form the visible screen area.

This scan updates the complete screen display 60 times every sec

ond.

The VIC-II chip keeps track of which line is being scanned, and

stores the scan number in the Raster Register at 53266 and 53265

($D012 and $D011). The Raster Register has two functions. When

read, it tells what line is presently being scanned. But when written

to, it designates a particular scan line as the place where a raster in

terrupt will occur.

At the exact moment that the raster beam line number equals

the number written to the register, Bit 0 of the status register will be

set to 1, showing that the conditions for a Raster Compare Interrupt

have been fulfilled. If the raster interrupt is enabled then, simulta

neously, the interrupt program will be executed. This allows the user

to reset any of the VIC-II registers at any point in the display, and

thus change character sets, background color, or graphics mode for

only a part of the screen display.

The interrupt routine will first check if the desired condition is

the source of the interrupt (see the above entry) and then make the

changes to the screen display. Once you have written this interrupt

routine, you must take the following steps to install it.

1. Set the interrupt disable flag in the status register with an SEI

instruction. This will disable all interrupts and prevent the system

from crashing while you are changing the interrupt vectors.

2. Enable the raster interrupt. This is done by setting Bit 0 of the

VIC-II chip interrupt enable register at location 53274 ($D01A) to 1.
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3. Indicate the scan line on which you want the interrupt to oc

cur by writing to the raster registers. Don't forget that this is a nine-

bit value, and you must set both the low byte (in location 53266,

$D012) and the high bit (in the register at 53265, $D011) in order to

insure that the interrupt will start at the scan line you want it to, and

not 256 lines earlier or later.

4. Let the computer know where the machine language routine

that you want the interrupt to execute starts. This is done by placing

the address in the interrupt vector at locations 788-789 ($314-$315).

This address is split into two parts, a low byte and a high byte, with

the low byte stored at 788.

To calculate the two values for a given address AD, you may

use the formula HIBYTE=INT(AD/256) and LOWBYTE=AD-

(HIBYTE*256). The value LOWBYTE would go into location 788,

and the value HIBYTE would go into location 789.

5. Reenable interrupts with a CLI instruction, which clears the

interrupt disable flag on the status register.

When the computer is first turned on, the interrupt vector is set

to point to the normal hardware timer interrupt routine, the one that

advances the jiffy clock and reads the keyboard. Since this interrupt

routine uses the same vector as the raster interrupt routine, it is best

to turn off the hardware timer interrupt by putting a value of 127 in

location 56333 ($DC0D).

If you want the keyboard and jiffy clock to function normally

while your interrupt is enabled, you must preserve the contents of

locations 788 and 789 before you change them to point to your new

routine. Then you must have your interrupt routine jump to the old

interrupt routine exactly once per screen refresh (every 1/60 second).

Another thing that you should keep in mind is that at least two

raster interrupts are required if you want to change only a part of

the screen. Not only must the interrupt routine change the display,

but it must also set up another raster interrupt that will change it

back.

The sample program below uses a raster-scan interrupt to divide

the display into three sections. The first 80 scan lines are in high-

resolution bitmap mode, the next 40 are regular text, and the last 80

are in multicolor bitmap mode. The screen will split this way as soon

as a SYS to the routine that turns on the interrupt occurs. The dis

play will stay split even after the program ends. Only if you hit the

STOP and RESTORE keys together will the display return to normal.

The interrupt uses a table of values that are POKEd into four

key locations during each of the three interrupts, as well as values to

determine at what scan lines the interrupts will occur. The locations

affected are Control Register 1 (53265, $D011), Control Register 2

(53270, $D016), the Memory Control Register (53272, $D018), and
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Background Color 0 (53281, $D021). The data for the interrupt rou

tine is contained in lines 49152-49276. Each of these line numbers

corresponds to the locations where the first data byte in the state

ment is POKEd into memory.

If you look at lines 49264-49276 of the BASIC program, you

will see REMark statements that explain which VIC-II registers are

affected by the DATA statements in each line. The numbers in these

DATA statements appear in the reverse order in which they are put

into the VIC register. For example, line 49273 holds the data that

will go into Control Register 2. The last number, 8, is the one that

will be placed into Control Register 2 while the top part of the

screen is displayed. The first number, 24, is placed into Control Reg

ister 2 during the bottom part of the screen display, and changes that

portion of the display to multicolor mode.

The only tricky part in determining which data byte affects

which interrupt comes in line 49264, which holds the data that de

termines the scan line at which each interrupt will occur. Each

DATA statement entry reflects the scan line at which the next inter

rupt will occur. The first item in line 49264 is 49. Even though this is

the entry for the third interrupt, this number corresponds to the top

of the screen (only scan lines 50-249 are visible on the display). That

is because after the third interrupt, the next to be generated is the

first interrupt, which occurs at the top of the screen. Likewise, the

last data item of 129 is used during the first interrupt to start the

next interrupt at scan line 129.

Try experimenting with these values to see what results you

come up with. For example, if you change the number 170 to 210,

you will increase the text area by five lines (40 scan lines).

By changing the values in the data tables, you can alter the ef

fect of each interrupt. Change the 20 in line 49276 to 22, and you

will get lowercase text in the middle of the screen. Change the first 8

in line 49273 to 24, and you'll get multicolor text in the center win

dow. Each of these table items may be used exactly like you would

use the corresponding register, in order to change background color,

to obtain text or bitmap graphics, regular or multicolor modes, screen

blanking or extended background color mode.

It is even possible to change the table values during a program,

by POKEing the new value into the memory location where those

table values are stored. In that way, you can, for example, change

the background color of any of the screen parts while the program is

running.

5 FOR 1=0 TO 7:BI(I)=2tl:NEXT

10 FOR 1=49152 TO 49278: READ A:POKE I,A:NEXT:SYS1

2*4096

20 PRINT CHR$(147):FOR 1=0 TO 8:PRINT:NEXT
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30 PRINT"THE TOP AREA IS HIGH-RES BIT MAP MODE"

40 PRINT:PRINT"THE MIDDLE AREA IS ORDINARY TEXT "

50 PRINT:PRINT"THE BOTTOM AREA IS MULTI-COLOR BIT

{SPACE}MAP"

60 FORG=1384 TO 1423:POKE G,6:NEXT

70 FORG=1024 TO 1383:POKEG,114:POKE G+640#234:NEXT

80 A$="":FOR 1=1 TO 128:A$=A$+"@":NEXT:FOR 1=32 TO

63 STEP 2

90 POKE 648,I:PRINT CHR$(19)CHR$(153);A$;A$;A$;A$:

NEXT:POKE 648,4

100 BASE=2*4096:BK=49267

110 H=40:C=0:FORX=0TO319:GOSUB150:NEXT

120 H=160:C=0:FORX=0TO319STEP2 2GOSUB150:NEXT:C=40

125 FORX=1TO319STEP2:GOSUB150:NEXT

130 C=80:FOR X=0 TO 319 STEP2:W=0:GOSUB150:W=1:GOS

UB150:NEXT

140 GOTO 140

150 Y=INT(H+20*SIN(X/10+C)):BY=BASE+40*(Y AND 248)

+ (Y AND 7)+(X AND 504)

160 POKE BY,PEEK(BY) OR (BI(ABS(7-(XAND7)-W))):RET

URN

49152 DATA 120, 169, 127, 141, 13, 220

49158 DATA 169, 1, 141, 26, 208, 169

49164 DATA 3, 133, 251, 173, 112, 192

49170 DATA 141, 18, 208, 169, 24, 141

49176 DATA 17, 208, 173, 20, 3, 141

49182 DATA 110, 192, 173, 21, 3, 141

49188 DATA 111, 192, 169, 50, 141, 20

49194 DATA 3, 169, 192, 141, 21, 3

49200 DATA 88, 96, 173, 25, 208, 141

49206 DATA 25, 208, 41, 1, 240, 43

49212 DATA 198, 251, 16, 4, 169, 2

49218 DATA 133, 251, 166, 251, 189, 115

49224 DATA 192, 141, 33, 208, 189, 118

49230 DATA 192, 141, 17, 208, 189, 121

49236 DATA 192, 141, 22, 208, 189, 124

49242 DATA 192, 141, 24, 208, 189, 112

49248 DATA 192, 141, 18, 208, 138, 240

49254 DATA 6, 104, 168, 104, 170, 104

49260 DATA 64, 76, 49, 234

49264 DATA 49, 170, 129 :REM SCAN LINES

49267 DATA 0, 6, 0:REM BACKGROUND COLOR

49270 DATA 59, 27,59:REM CONTROL REG, 1

49273 DATA 24, 8, 8:REM CONTROL REG. 2

49276 DATA 24, 20, 24:REM MEMORY CONTROLRUN

Besides enabling the creation of mixed graphics-modes screens, the

Raster Compare Interrupt is also useful for creating scrolling zones,

so that some parts of the screen can be fine-scrolled while the rest

remains stationary.
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Bit 1 enables the light pen interrupt. This interrupt can occur

when the light of the raster beam strikes the light-sensitive device in

the pen's tip, causing it to close the fire button switch on joystick

Controller Port #1.

The light pen interrupt affords a method of signaling to a pro

gram that the pen is being held to the screen, and that its position

can be read. Some light pens provide a push-button switch which

grounds one of the other lines on the joystick port. This switch can

be pressed by the user as an additional signal that the pen is proper

ly positioned. Its location can then be read in the light pen position

registers (53267-8, $D013-4).

Bit 2 enables the sprite-foreground collision interrupt. This inter

rupt can occur if one of the sprite character's dots is touching one of

the dots from the foreground display of either text character or

bitmap graphics.

Bit 3 enables the sprite-sprite collision interrupt, which can occur

if one of the sprite character's dots is touching one of the dots of

another sprite character.

These two interrupts are useful for games, where such collisions

often require that some action be taken immediately. Once the inter

rupt signals that a collision has occurred, the interrupt routine can

check the Sprite-Foreground Collision Register at 53279 ($D01F), or

the Sprite-Sprite Collision Register at 53278 ($D01E), to see which

sprite or sprites are involved in the collision. See the entry for those

locations for more details on collisions.

53275 $D01B SPBGPR
Sprite to Foreground Display Priority Register

Bit 0: Select display priority of Sprite 0 to foreground (0=sprite

appears in front of foreground)

Bit 1: Select display priority of Sprite 1 to foreground (0=sprite

appears in front of foreground)

Bit 2: Select display priority of Sprite 2 to foreground (0=sprite

appears in front of foreground)

Bit 3: Select display priority of Sprite 3 to foreground (0=sprite

appears in front of foreground)

Bit 4: Select display priority of Sprite 4 to foreground (0=sprite

appears in front of foreground)

Bit 5: Select display priority of Sprite 5 to foreground (0=sprite

appears in front of foreground)

Bit 6: Select display priority of Sprite 6 to foreground (0=sprite

appears in front of foreground)

Bit 7: Select display priority of Sprite 7 to foreground (0=sprite
appears in front of foreground)

If a sprite is positioned to appear at a spot on the screen that is al-
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ready occupied by text or bitmap graphics, a conflict arises. The con

tents of this register determines which one will be displayed in such

a situation. If the bit that corresponds to a particular sprite is set to

0, the sprite will be displayed in front of the foreground graphics

data. If that bit is set to 1, the foreground data will be displayed in

front of the sprite. The default value that this register is set to at

power-on is 0, so all sprites start out with priority over foreground

graphics.

Note that for the purpose of priority, the 01 bit-pair of multi

color graphics modes is considered to display a background color,

and therefore will be shown behind sprite graphics even if the fore

ground graphics data takes priority. Also, between the sprites them

selves there is a fixed priority. Each sprite has priority over all

higher-number sprites, so that Sprite 0 is displayed in front of all the

others.

The use of priority can aid in creating three-dimensional effects,

by allowing some objects on the screen to pass in front of or behind

other objects.

53276 $D01C SPMC
Sprite Multicolor Registers

Bit 0: Select multicolor mode for Sprite 0 (1=multicolor, 0=hi-res)

Bit 1: Select multicolor mode for Sprite 1 (1=multicolor, 0=hi-res)

Bit 2: Select multicolor mode for Sprite 2 (1=multicolor, 0=hi-res)

Bit 3: Select multicolor mode for Sprite 3 (1= multicolor, 0=hi-res)

Bit 4: Select multicolor mode for Sprite 4 (1=multicolor, 0=hi-res)

Bit 5: Select multicolor mode for Sprite 5 (1=multicolor, 0=hi-res)

Bit 6: Select multicolor mode for Sprite 6 (1=multicolor, 0=hi-res)

Bit 7: Select multicolor mode for Sprite 7 (1= multicolor, 0=hi-res)

Sprite multicolor mode is very similar to text and bitmap multicolor

modes (see Bit 4 of 53270, $D016). Normally, the color of each dot

of the sprite display is controlled by a single bit of sprite shape data.

When this mode is enabled for a sprite, by setting the corresponding

bit of this register to 1, the bits of sprite shape data are grouped to

gether in pairs, with each pair of bits controlling a double-wide dot

of the sprite display. By sacrificing some of the horizontal resolution

(the sprite, although the same size, is now only 12 dots wide), you

gain the use of two additional colors. The four possible combinations

of these bit-pairs display dot colors from the following sources:

00 Background Color Register 0 (transparent)

01 Sprite Multicolor Register 0 (53285, $D025)

10 Sprite Color Registers (53287-94, $D027-E)

11 Sprite Multicolor Register 1 (53286, $D026)

Like multicolor text characters, multicolor sprites all share two color
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registers. While each sprite can display three foreground colors, only

one of these colors is unique to that sprite. The number of unique

colors may be increased by combining more than one sprite into a

single character.

53277 $D01D XXPAND
Sprite Horizontal Expansion Register

Bit 0: Expand Sprite 0 horizontally (1= double-width sprite,

0=normal width)

Bit 1: Expand Sprite 1 horizontally (1=double-width sprite,

0=normal width)

Bit 2: Expand Sprite 2 horizontally (1=double-width sprite,

0=normal width)

Bit 3: Expand Sprite 3 horizontally (1= double-width sprite,

0=normal width)

Bit 4: Expand Sprite 4 horizontally (1=double-width sprite,

0=normal width)

Bit 5: Expand Sprite 5 horizontally (1= double-width sprite,

0=normal width)

Bit 6: Expand Sprite 6 horizontally (1= double-width sprite,

0=normal width)

Bit 7: Expand Sprite 7 horizontally (1=double-width sprite,

0=normal width)

This register can be used to double the width of any sprite. Setting

any bit of this register to 1 will cause each dot of the corresponding

sprite shape to be displayed twice as wide as normal, so that without

changing its horizontal resolution, the sprite takes up twice as much

space. The horizontal expansion feature can be used alone, or in

combination with the vertical expansion register at 53271 ($D017).

Location Range: 53278-53279 <$D01E-
$D01F)

Spite Collision Detection Registers

While Bit 2 of the VIC IRQ Register at 53273 ($D019) is set to 1 any

time two sprites overlap, and Bit 1 is set to 1 when a sprite shape is

touching the foreground text or bit-graphics display, these registers

specify which sprites were involved in the collision. Every bit that is

set to 1 indicates that the corresponding sprite was involved in the

collision. Reading these registers clears them so that they can detect

the next collision. Therefore, if you plan to make multiple tests on

the values stored here, it may be necessary to copy it to a RAM vari

able for further reference.
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Note that while these registers tell you what sprites were in

volved in a collision, they do not necessarily tell you what objects

have collided with each other. It is quite possible to have three

sprites lined up in a row, where Sprite A is on the left, Sprite B is in

the middle, touching Sprite A, and Sprite C is on the right, touching

Sprite B but not touching Sprite A. The Sprite-Sprite Collision regis

ter would show that all three are involved. The only way to make

absolutely certain which collided with which is to check the position

of each sprite, and calculate for each sprite display line if a sprite of

that size would touch either of the others. As you can imagine, this

is no easy task.

There are a few simple rules concerning what does or does not

cause a collision. Though the sprite character consists of 504 dots in

a 24 by 21 matrix, dots which represent data bits that are equal to 0

(or multicolor bit-pairs equal to 00), and therefore always displayed

in the background color, do not count when it comes to collision.

A collision can occur only if a dot which represents a sprite

shape data bit of 1 touches another dot of nonzero graphics data.

Consider the case of two invisible sprites. The first sprite is enabled,

its color is set to contrast the background, and it is positioned on the

screen, but its shape data bytes are all 0. This sprite can never be in

volved in a collision, because it displays no nonzero data. The sec

ond sprite is enabled, positioned on the screen, and its shape pointer

set for a data read that is filled with bytes having a value of 255.

Even if that sprite's color is set to the same value as the background

color, making the sprite invisible, it can still be involved in colli

sions. The only exception to this rule is the 01 bit-pair of multicolor

graphics data. This bit-pair is considered part of the background, and

the dot it displays can never be involved in a collision.

The other rule to remember about collisions is that they can occur

in areas that are covered by the screen border. Collision between

sprites can occur when the sprites are offscreen, and collisions be

tween sprites and foreground display data can occur when that data

is in an area that is coverred by the border due to the reduction of

the display to 38 columns or 24 rows.

53278 $D01E SPSPCL
Sprite to Sprite Collision Register

Bit 0: Did Sprite 0 collide with another sprite? (l=yes)

Bit 1: Did Sprite 1 collide with another sprite? (l=yes)

Bit 2: Did Sprite 2 collide with another sprite? (l=yes)

Bit 3: Did Sprite 3 collide with another sprite? (l=yes)

Bit 4: Did Sprite 4 collide with another sprite? (l=yes)

Bit 5: Did Sprite 5 collide with another sprite? (l=yes)

Bit 6: Did Sprite 6 collide with another sprite? (l=yes)

Bit 7: Did Sprite 7 collide with another sprite? (l=yes)
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53279 $D01F SPBGCL
Sprite to Foreground Collision Register

Bit 0: Did Sprite 0 collide with the foreground display? (l=yes)
Bit 1: Did Sprite 1 collide with the foreground display? (l=yes)

Bit 2: Did Sprite 2 collide with the foreground display? (l=yes)

Bit 3: Did Sprite 3 collide with the foreground display? (l=yes)

Bit 4: Did Sprite 4 collide with the foreground display? (l=yes)

Bit 5: Did Sprite 5 collide with the foreground display? (l=yes)

Bit 6: Did Sprite 6 collide with the foreground display? (l=yes)

Bit 7: Did Sprite 7 collide with the foreground display? (l=yes)

Location Range: 53280-53294 ($D020-

VIC-II Color Register

Although these color registers are used for various purposes, all of

them have one thing in common. Like the Color RAM Nybbles, only

the lower four bits are connected. Therefore, when reading these

registers, you must mask out the upper four bits (that is,

BORDERCOLOR=PEEK(53280 AND 15)) in order to get a true

reading.

53280 $D020 EXTCOL
Border Color Register

The color value here determines the color of the border or frame

around the central display area. The entire screen is set to this color

when the blanking feature of Bit 4 of 53265 ($D011) is enabled. The

default color value is 14 (light blue).

53281 $D021 BGCOL0
Background Color 0

This register sets the background color for all text modes, sprite

graphics, and multicolor bitmap graphics. The default color value is

6 (blue).

53282 $D022 BGCOL1
Background Color 1

This register sets the color for the 01 bit-pair of multicolor character

graphics, and the background color for characters having screen

codes 64-127 in extended background color text mode. The default

color value is 1 (white).

53283 $D023 BGCOL2
Background Color 2

This register sets the color for the 10 bit-pair of multicolor character

graphics, and the background color for characters having screen

156



53292

codes 128-191 in extended background color text mode. The default

color value is 2 (red).

53284 $D024 BGCOL3
Background Color 3

This register sets the background color for characters having screen

codes between 192 and 255 in extended background color text mode.

The default color value is 3 (cyan).

53285 $D025 SPMCO
Sprite Multicolor Register 0

This register sets the color that is displayed by the 01 bit-pair in

multicolor sprite graphics. The default color value is 4 (purple).

53286 $D026 SPMC1
Sprite Multicolor Register 1

This register sets the color that is displayed by the 11 bit-pair in

multicolor sprite graphics. The default color value is 0 (black).

Location Range: 53287-53294 ($D027-

$D02E)
Sprite Color Registers

These registers are used to set the color to be displayed by bits of hi

res sprite data having a value of 1, and by bit-pairs of multicolor

sprite data having a value of 10. The color of each sprite is deter

mined by its own individual color register.

53287 $D027 SPOCOL
Sprite 0 Color Register (the default color value is 1, white)

53288 $D028 SP1COL
Sprite 1 Color Register (the default color value is 2, red)

53289 $D029 SP2COL
Sprite 2 Color Register (the default color value is 3, cyan)

53290 $D02A SP3COL
Sprite 3 Color Register (the default color value is 4, purple)

53291 $D02B SP4COL
Sprite 4 Color Register (the default color value is 5, green)

53292 $D02C SP5COL
Sprite 5 Color Register (the default color value is 6, blue)
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53293 $D02D SP6COL
Sprite 6 Color Register (the default color value is 7, yellow)

53294 $D02E SP7COL
Sprite 7 Color Register (the default color value is 12, medium

gray)

Location Range: 53295-53311 ($D02F-
$D03F)

Not Connected

The VIC-II chip has only 47 registers for 64 bytes of possible address

space. Therefore, the remaining 17 addresses do not access any

memory. When read, they will always give a value of 255 ($FF).

This value will not change after writing to them.

Location Range: 53312-54271 ($D040-
$D3FF)

VIC-II Register Images

Since the VIC-II requires only enough addressing lines to handle 64

locations (the minimum possible for its 47 registers), none of the

higher bits are decoded when addressing this IK area. The result is

that every 64-byte area in this IK block is a mirror of every other.

POKE53281 + 64,1 has the same effect as POKE 53281,1 or POKE

53281 + 10*64,1; they all turn the screen background to white. For

the sake of clarity in your programs it is advisable to use the base

address of the chip.

Sound Interface Device

(SID) Registers

Memory locations 54272-54300 ($D400-$D41C) are used to address

the 6581 Sound Interface Device (SID).

SID is a custom music synthesizer and sound effects generator

chip that gives the 64 its impressive musical capabilities. It provides

three separate music channels, or voices, as they are called. Each

voice has 16-bit frequency resolution, waveform control, envelope

shaping, oscillator synchronization, and ring modulation. In addition,

programmable high-pass, low-pass, and band-pass filters can be set

and enabled or disabled for each sound channel.

Since quite a few of these locations must be used in concert to

produce sound, a brief summary of the interplay between some of

these registers may be helpful.

Often the first step is to select an overall volume level using the
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Volume Register. Then, the desired frequency or pitch of the note is

chosen by writing to each of the two bytes which make up the 16-bit

Frequency Register.

An ADSR envelope setting must be chosen by writing values to

the Attack/Decay and Sustain/Release Registers. These determine

the rate of the rise and fall of the volume of the note from zero vol

ume to peak volume and back again. These rates have a great influ

ence on the character of the sound.

Finally, the waveform must be selected, and the note started (or

the oscillator gated, as we say). This is done by writing certain bits

to the Control Register. The waveform control lets you select one of

four different waveforms, each of which has varying harmonic con

tent that affects the tone quality of the sound. By writing a 1 to the

gate bit, you start the Attack/Decay/Sustain cycle. After rising to a

peak and declining to the Sustain volume, the volume will continue

at the same level until you write a 0 to the gate bit. Then, the Re

lease cycle will start. Make sure that you keep the same waveform

bit set to 1 while you write the 0 to the gate bit, so that the Release

cycle starts. Otherwise, the sound will stop entirely, as it also will if

the Volume Register or the Frequency Register is set to 0.

It should be noted that except for the last four SID chip regis

ters, these addresses are write-only. That means that their values

cannot be determined by PEEKing these locations.

Location Range: 54272-54273 ($D400-
$D401)

Voice 1 Frequency Control

Together, these two locations control the frequency or pitch of the

musical output of voice 1. Some frequency must be selected in order

for voice 1 to be heard. This frequency may be changed in the mid

dle of a note to achieve special effects. The 16-bit range of the Fre

quency Control Register covers over eight full octaves, and allows

you to vary the pitch from 0 (very low) to about 4000 Hz (very

high), in 65536 steps. The exact frequency of the output can be

determined by the equation

FREQUENCY=(REGISTERVALUE*CLOCK/16777216)Hz

where CLOCK equals the system clock frequency, 1022730 for

American (NTSC) systems, 985250 for European (PAL), and

REGISTER VALUE is the combined value of these frequency reg

isters. That combined value equals the value of the low byte plus

256 times the value of the high byte. Using the American (NTSC)

clock value, the euqation works out to

FREQUENCY=REGISTER VALUE*.060959458 Hz
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54272 $D400 FRELO1
Voice 1 Frequency Control (low byte)

54273 $D401 FREHI1
Voice 1 Frequency Control (high byte)

Location Range: 54274-54275<$D402-
$D403)

Voice 1 Pulse Waveform Width Control

As you will see below under the description of the Control Register

at 54276 ($D404), you can select one of four different waveforms for

the output of each voice. If the pulse waveform is selected, these

registers must be set to establish the pulse width.

The pulse width has a 12-bit resolution, being made up of the

value in the first register and the value in the lower nybble of the

second register. The pulse width determines the duty cycle, or pro

portion of time that the rectangular wave will stay at the high part of

the cycle.

The following formula shows the relationship between the value

in the Pulse Width Register and the proportion of time that the wave

stays at the high part of the cycle:

PULSE WIDTH=(REGISTER VALUE/40.95)%

The possible range of register values (0-4095) covers the range of

duty cycles from 0 to 100 percent in 4096 steps. Changing the pulse

width will vastly change the sound created with the pulse waveform.

54274 $D402 PWLO1
Voice 1 Pulse Waveform Width (low byte)

54275 $D403 PWHI1
Voice 1 Pulse Waveform Width (high nybble)

54276 $D404 VCREG1
Voice 1 Control Register

Bit 0: Gate Bit: 1=Start attack/decay/sustain, 0 = Start release

Bit 1: Sync Bit: 1= Synchronize Oscillator with Oscillator 3

frequency

Bit 2: Ring Modulation: l=Ring modulate Oscillators 1 and 3

Bit 3: Test Bit: 1=Disable Oscillator 1

Bit 4: Select triangle waveform

Bit 5: Select sawtooth waveform

Bit 6: Select pulse waveform

Bit 7: Select random noise waveform
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Bit 0. Bit 0 is used to gate the sound. Setting this bit to a 1

while selecting one of the four waveforms will start the attack/

decay/sustain part of the cycle. Setting this bit back to a 0 (while

keeping the same waveform setting) anytime after a note has started

playing will begin the release cycle of the note. Of course, in order

for the gate bit to have an effect, the frequency and attack/decay/

sustain/release (ADSR) registers must be set, as well as the pulse

width, if necessary, and the volume control set to a nonzero value.

Bit 1. This bit is used to synchronize the fundamental frequency
of Oscillator 1 with the fundamental frequency of Oscillator 3, allow

ing you to create a wide range of complex harmonic structures from

voice 1. Synchronization occurs when this bit is set to 1. Oscillator 3

must be set to some frequency other than zero, but no other voice 3

parameters will affect the output from voice 1.

Bit 2. When Bit 2 is set to 1, the triangle waveform output of

voice 1 is replaced with a ring modulated combination of Oscillators

1 and 3. This ring modulation produces nonharmonic overtone struc

tures that are useful for creating bell or gong effects.

Bit 3. Bit 3 is the test bit. When set to 1, it disables the output of

the oscillator. This can be useful in generating very complex wave

forms (even speech synthesis) under software control.

Bit 4. When set to 1, Bit 4 selects the triangle waveform output

of Oscillator 1. Bit 0 must also be set for the note to be sounded.

Bit 5. This bit selects the sawtooth waveform when set to 1. Bit

0 must also be set for the sound to begin.

Bit 6. Bit 6 chooses the pulse waveform when set to 1. The har

monic content of sound produced using this waveform may be var

ied using the Pulse Width Registers. Bit 0 must be set to begin the

sound.

Bit 7. When Bit 7 is set to 1, the noise output waveform for Os

cillator 1 is set. This creates a random sound output whose wave

form varies with a frequency proportionate to that of Oscillator 1. It

can be used to imitate the sound of explosions, drums, and other

unpitched noises.

One of the four waveforms must be chosen in order to create a

sound. Setting more than one of these bits will result in a logical

ANDing of the waveforms. Particularly, the combination of the noise

waveform and another is not recommended.

Location Range: 54277-54278 ($D405-
$D406)

Voice 1 Envelope (ADSR) Control

When a note is played on a musical instrument, the volume does not

suddenly rise to a peak and then cut off to zero. Rather, the volume

builds to a peak, levels off to an intermediate value, and then fades
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away. This creates what is known as a volume envelope.

The first phase of the envelope, in which the volume builds to a

peak, is known as the attack phase. The second, in which it declines

to an intermediate level, is called the decay phase. The third, in

which the intermediate level of volume is held, is known as the sus

tain period. The final interval, in which the sound fades away, is

called the release part of the cycle.

The SID chip allows the volume envelope of each voice to be

controlled, so that specific instruments may be imitated, or new

sounds created. This is done via the attack/decay and sustain/re

lease registers. Each register devotes four bits (which can store a

number from 0 to 15) to each phase of the cycle. When a note is

gated by writing a 1 to a waveform bit and to Bit 0 of the Control

Register, the attack cycle begins.

The volume of the sound builds to a peak over the period of

time specified by the high nybble of the attack/decay register. Once

it has reached the peak volume, it falls to the intermediate level dur

ing the period indicated by the low nybble of the attack/decay regis

ter (this is the decay phase). The volume of this intermediate or sus

tain level is selected by placing a value in the high nybble of the

sustain/release register. This volume level is held until a 0 is written

to the gate bit of the control register (while leaving the waveform bit

set). When that happens, the release phase begins, and the volume

of the sound begins to taper off during the period indicated by the

low nybble of the sustain/release register.

You may notice the volume of the sound does not quite get to 0

at the end of the release cycle, and you may need to turn off the

sound to get rid of the residual noise. You can do this either by set

ting the waveform bit back to 0, changing the frequency to 0, or set

ting the volume to 0.

54277 $D405 ATDCY1
Voice 1 Attack/Decay Register

Bits 0-3: Select decay cycle duration (0-15)

Bits 4-7: Select attack cycle duration (0-15)

Bits 4-7 control the duration of the attack cycle. This is the period of

time over which the volume will rise from 0 to its peak amplitude.

There are 16 durations which may be selected. The way in which

the number placed here corresponds to the elapsed time of this cycle

is as follows:

0=2 milliseconds

1 = 8 milliseconds

2=16 milliseconds

3=24 milliseconds

4=38 milliseconds
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5=56 milliseconds

6 = 68 milliseconds

7=80 milliseconds

8 = 100 milliseconds

9=250 milliseconds

10=500 milliseconds

11 = 800 milliseconds

12= 1 second

13=3 seconds

14=5 seconds

15 = 8 seconds

Bits 0-3 control the length of the decay phase, in which the volume

of the note declines from the peak reached in the attack phase to the

sustain level. The number selected corresponds to the length of this

phase as shown below:

0 = 6 milliseconds

1 = 24 milliseconds

2=48 milliseconds

3 = 72 milliseconds

4 = 114 milliseconds

5 = 168 milliseconds

6=204 milliseconds

7=240 milliseconds

8=300 milliseconds

9 = 750 milliseconds

10= 1.5 seconds

11 = 2.4 seconds

12=3 seconds

13=9 seconds

14 = 15 seconds

15 = 24 seconds

Since the two functions share one register, you must multiply the at

tack value by 16 and add it to the decay value in order to come up

with the number to be placed in the register:

REGISTER VALUE=(ATTACK*16)+DECAY

54278 $D406 SURELI
Voice 1 Sustain/Release Control Register

Bits 0-3: Select release cycle duration (0-15)

Bits 4-7: Select sustain volume level (0-15)

Bits 4-7 select the volume level at which the note is sustained. Fol

lowing the decay cycle, the volume of the output of voice 1 will re

main at the selected sustain level as long as the gate bit of the Con

trol Register is set to 1. The sustain values range from 0, which
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chooses no volume, to 15, which sets the output of voice 1 equal to

the peak volume achieved during the attack cycle.

Bits 0-3 determine the length of the release cycle. This phase, in

which the volume fades from the sustain level to near zero volume,

begins when the gate bit of the Control Register is set to 0 (while

leaving the waveform setting that was previously chosen). The dura

tion of this decline in volume corresponds to the number (0-15) se

lected in the same way as for the decay value:

0 = 6 milliseconds

1=24 milliseconds

2=48 milliseconds

3 = 72 milliseconds

4 = 114 milliseconds

5 = 168 milliseconds

6 = 204 milliseconds

7=240 milliseconds

8=300 milliseconds

9 = 750 milliseconds

10 = 1.5 seconds

11=2.4 seconds

12=3 seconds

13=9 seconds

14= 15 seconds

15=24 seconds

Location Range: 54279-54292 ($D407-

$D414)
Voice 2 and Voice 3 Controls

The various control registers for these two voices correspond almost

exactly to those of voice 1. The one exception is that the sync and

ring-modulation bits of voice 2 operate on Oscillators 1 and 2, while

the same bits of the Control Register for voice 3 use Oscillators 2

and 3.

54279 $D407 FRELO2
Voice 2 Frequency Control (low byte)

54280 $D408 FREHI2
Voice 2 Frequency Control (high byte)

54281 $D409 PWLO2
Voice 2 Pulse Waveform Width (low byte)

54282 $D40A PWHI2
Voice 2 Pulse Waveform Width (high nybble)
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54283 $D40B VCREG2
Voice 2 Control Register

Bit 0: Gate Bit: 1=Start attack/decay/sustain, 0=Start release

Bit 1: Sync Bit: 1=Synchronize oscillator with Oscillator 1 frequency

Bit 2: Ring Modulation: l=Ring modulate Oscillators 2 and 1

Bit 3: Test Bit: 1=Disable Oscillator 2

Bit 4: Select triangle waveform

Bit 5: Select sawtooth waveform

Bit 6: Select pulse waveform

Bit 7: Select noise waveform

54284 $D40C ATDCY2
Voice 2 Attack/Decay Register

Bits 0-3: Select decay cycle duration (0-15)

Bits 4-7: Select attack cycle duration (0-15)

54285 $D40D SUREL2
Voice 2 Sustain/Release Control Register

Bits 0-3: Select release cycle duration (0-15)

Bits 4-7: Select sustain volume level (0-15)

54286 $D40E FRELO3
Voice 3 Frequency Control (low byte)

54287 $D40F FREHI3
Voice 3 Frequency Control (high byte)

54288 $D410 PWLO3
Voice 3 Pulse Waveform Width (low byte)

54289 $D411 PWHI3
Voice 3 Pulse Waveform Width (high nybble)

54290 $D412 VCREG3
Voice 3 Control Register

Bit 0: Gate Bit: 1=Start attack/decay/sustain, 0=Start release

Bit 1: Sync Bit: 1=Synchronize oscillator with Oscillator 2 frequency

Bit 2: Ring modulation: l=Ring modulate Oscillators 3 and 2

Bit 3: Test Bit: 1=Disable Oscillator 3

Bit 4: Select triangle waveform

Bit 5: Select sawtooth waveform

Bit 6: Select pulse waveform

Bit 7: Select noise waveform
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54291 $D413 ATDCY3
Voice 3 Attack/Decay Register

Bits 0-3: Select decay cycle duration (0-15)

Bits 4-7: Select attack cycle duration (0-15)

54292 $D414 SUREL3
Voice 3 Sustain/Release Control Register

Bits 0-3: Select release cycle duration (0-15)

Bits 4-7: Select sustain volume level (0-15)

Location Range: 54293-54296 ($D415-
$D418)

Filter Controls

In addition to the controls detailed above for each voice, the SID

chip also provides a filtering capability which allows you to attenu

ate (make quieter) certain ranges of frequencies. Any one or all three

voices can be filtered, and there is even a provision for filtering an

external signal that is input through pin 5 of the monitor jack.

A low-pass filter is available, which suppresses the volume of

those frequency components that are above a designated cutoff level.

The high-pass filter reduces the volume of frequency components

that are below a certain level. The band-pass filter reduces the vol

ume of frequency components on both sides of the chosen frequen

cy, thereby enhancing that frequency. Finally, the high-pass and

low-pass filters can be combined to form a notch reject filter, which

reduces the volume of the frequency components nearest the select

ed frequency. These various filters can dramatically change the quali

ty of the sound produced.

The first two registers are used to select the filter cutoff frequen

cy. This is the frequency above or below which any sounds will be

made quieter. The further away from this level any frequency com

ponents are, the more their output volume will be suppressed (high-

and low-pass filters reduce the volume of those components by 12

dB per octave away from the center frequency, while the band-pass

filter attenuates them by 6 dB per octave).

The cutoff frequency has an 11-bit range (which corresponds to

numbers from 0 to 2047). This is made up of a high byte and three

low bits. Therefore, to compute the frequency represented by the value

in these registers, you must multiply the value in the high byte by 8,

and add the value of the low three bits. The range of cutoff frequen

cies represented by these 2048 values stretches from 30 Hz to about

12,000 Hz. The exact frequency may be calculated with the formula:

FREQUENCY=(REGISTER VALUE*5.8)+30Hz
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An additional element in filtering is the resonance control. This al

lows you to peak the volume of the frequency elements nearest the

cutoff frequency.

54293 $D415 CUTLO

Bits 0-2: Low portion of filter cutoff frequency

Bits 5-7: Unused

54294 $D416 CUTHI
Filter Cutoff Frequency (high byte)

54295 $D417 RESON
Filter Resonance Control Register

Bit 0: Filter the output of voice 1? l=yes

Bit 1: Filter the output of voice 2? l=yes

Bit 2: Filter the output of voice 3? l=yes

Bit 3: Filter the output from the external input? l=yes

Bits 4-7: Select filter resonance 0-15

Bits 0-3 are used to control which of the voices will be altered by the

filters. If one of these bits is set to 1, the corresponding voice will be

processed through the filter, and its harmonic content will be

changed accordingly. If the bit is set to 0, the voice will pass directly

to the audio output. Note that there is also a provision for processing

an external audio signal which is brought in through pin 5 of the

Audio/Video Port.

Bits 4-7 control the resonance of the filter. By placing a number

from 0 to 15 in these four bits, you may peak the volume of those

frequencies nearest the cutoff. This creates an even sharper filtering

effect. A setting of 0 causes no resonance, while a setting of 15 gives

maximum resonance.

54296 $D418 SIGVOL
Volume and Filter Select Register

Bits 0-3: Select output volume (0-15)

Bit 4: Select low-pass filter, 1=low-pass on
Bit 5: Select band-pass filter, 1=band-pass on

Bit 6: Select high-pass filter, 1=high-pass on

Bit 7: Disconnect output of voice 3, 1=voice 3 off

Bits 0-3 control the volume of all outputs. The possible volume lev

els range from 0 (no volume) to 15 (maximum volume). Some level

of volume must be set here before any sound can be heard.

Bits 4-6 control the selection of the low-pass, band-pass, or

high-pass filter. A 1 in any of these bits turns the corresponding fil

ter on. These filters can be combined, although only one cutoff
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frequency can be chosen. In order for the filter to have any effect, at

least one of the voices must be routed through it using the Filter

Resonance Control Register at 54295 ($D417).

When Bit 7 is set to 1, it disconnects the output of voice 3. This

allows you to use the output of the oscillator for modulating the fre

quency of the other voices, or for generating random numbers, with

out any undesired audio output.

Location Range: 54297-54298 ($D419-
$D41A)

Game Paddle Inputs

These registers allow you to read the game paddles that plug into

joystick Controller Ports 1 and 2. Each paddle uses a variable resistor

(also known as a potentiometer or pot), whose resistance is con

trolled by turning a knob. The varying resistance is used to vary the

voltage to two pins of the SID chip between 0 and +5 volts. Analog-

to-digital (A/D) converters in the chip interpret these voltage

levels as binary values and store the values in these registers. These

registers return a number from 0 (minimum resistance) to 255 (maxi

mum resistance) for each paddle in either of the ports, depending on

the position of the paddle knob.

Since these registers will read the paddle values for only one

controller port, there is a switching mechanism which allows you to

select which of the two ports to read. By writing a bit-pair of 01 (bit

value of 64) to the last two bits of CIA #1 Data Port A (56320,

$DC00), you select the paddles on joystick Controller Port 1. By

writing a bit-pair of 10 (bit value of 128), you select the paddles on

Controller Port 2.

If you look at the description of Data Port A (56320, $DC00),

however, you will notice that it is also used in the keyboard scan

ning process. By writing to this port, you determine which keyboard

column will be read.

Since the IRQ interrupt keyboard scan routine and the routine

that checks for the STOP key are putting values into this location 60

times per second, you cannot reliably select the pair of paddles you

wish to read from BASIC without first turning off the keyboard IRQ.

This can be done with a POKE 56333,127. You can then read the

paddles with the statements A=PEEK(54297) and B=PEEK(54298).

The IRQ can be restored after the paddle read with a POKE

56333,129. It may, however, be easier and more accurate in the long

run to use a machine language paddle read subroutine such as that

presented on page 347 of the Commodore 64 Programmer's Reference

Guide.

The paddle fire buttons are read as Bits 2 and 3 of the Data

Ports A (56320, $DC00) and B (56321, $DC01). On Port A, if Bit 2 is

set to 0, button 1 is pushed, and if Bit 3 is set to 0, button 2 is
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pushed. On Port B, if Bit 2 is set to 0, button 3 is pushed, and if Bit

3 is set to 0, button 4 is pushed.

The BASIC statements to test these buttons, therefore, are:

PB(l) =(PEEK(56321)AND4)/4

PB(2)=(PEEK(56321)AND8)/8

PB(3)=(PEEK(56320)AND4)/4

PB(4)=(PEEK(56320)AND8)/8

If a 0 is returned by the PEEK statement, the button is pushed, and

if a 1 is returned, it is not.

54297 $D419 POTX
Read Game Paddle 1 (or 3) Position

54298 $D41A POTY
Read Game Paddle 2 (or 4) Position

54299 $D41B RANDOM
Read Oscillator 3/Random Number Generator

This register lets you read the upper eight bits of the waveform out

put of Oscillator 3. The kinds of numbers generated by this output

depend on the type of waveform selected.

If the sawtooth waveform is chosen, the output read by this reg

ister will be a series of numbers which start at 0 and increase by 1

to a maximum of 255, at which time they start over at 0.

When the triangle waveform is chosen, they increase from 0 to

255, at which time they decrease to 0 again. The rate at which these

numbers change is determined by the frequency of Oscillator 3.

If the pulse waveform is selected, the output here will be either

255 or 0.

Finally, selecting the noise waveform will produce a random

series of numbers between 0 and 255. This allows you to use the

register as a random number generator for games.

There are many other uses for reading Oscillator 3, however,

particularly for modulation of the other voices through machine lan

guage software. For example, the output of this register could be

added to the frequency of another voice. If the triangle waveform

were selected for this purpose, it would cause the frequency of the

other voice to rise and fall, at the frequency of Oscillator 3 (perhaps

for vibrato effects). This output can also be combined with the Filter

Frequency or Pulse Width Registers to vary the values in these regis

ters quickly over a short period of time.

Normally, when using Oscillator 3 for modulation, the audio

output of voice 3 should be turned off by setting Bit 7 of the Volume

and Filter Select Register at 54296 ($D418) to 1. It is not necessary to

gate Bit 0 of Control Register 3 to use the oscillator, however, as its

output is not affected by the ADSR envelope cycle.
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54300 $D41C ENV3
Envelope Generator 3 Output

This register allows you to read the output of the voice 3 Envelope

generator, in much the same way that the preceding register lets you

read the output of Oscillator 3. This output can also be added to an

other oscillator's Frequency Control Registers, Pulse Width Registers,

or the Filter Frequency Register. In order to produce any output from

this register, however, the gate bit in Control Register 3 must be set

to 1. Just as in the production of sound, setting the gate bit to 1

starts the attack/decay/sustain cycle, and setting it back to 0 starts
the release cycle.

Location Range: 54301-54303 ($D41D-
$D41F)

Not Connected

The SID chip has been provided with enough addresses for 32 dif

ferent registers, but as it has only 29, the remaining three addresses

are not used. Reading them will always return a value of 255 ($FF),

and writing to them will have no effect.

Location Range: 54304-55295 ($D420-
$D7FF)

SID Register Images

Since the SID chip requires enough addressing lines for only 32 loca

tions (the minimum possible for its 29 registers), none of the higher

bits are decoded when addressing the IK area that has been as

signed to it. The result is that every 32-byte area in this IK block is a

mirror of every other. For the sake of clarity in your programs, it is

advisable not to use these addresses at all.

55296-56319 ($D800-$DBFF) Color RAM
The normal Commodore 64 text graphics system uses a screen RAM

area to keep track of the character shapes that are to be displayed.

But since each character can be displayed in any of 16 foreground

colors, there must also be a parallel area which keeps track of the

foreground color. This 1024-byte area is used for that purpose (actu

ally, since there are only 1000 screen positions, only 1000 bytes ac

tually affect screen color).

These 1000 bytes each control the foreground color of one char

acter, with the first byte controlling the foreground color of the char

acter in the upper-left corner, and subsequent bytes controlling the

characters to the right and below that character.

Because only four bits are needed to represent the 16 colors

available, only the low four bits of each Color RAM location are
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connected (this is why they are sometimes referred to as Color RAM

Nybbles). Writing to the high bits will not affect them, and these

four bits will usually return a random value when read (a small

number of 64s return a constant value).

Therefore, in order to read Color RAM correctly, you must mask

out the top bits by using the logical AND function. In BASIC, you

can read the first byte of Color RAM with the statement

CR=PEEK(55296)AND15. This will always return a color value be

tween 0 and 15. These color values correspond to the following

colors:

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

= BLACK

= WHITE

= RED

= CYAN (LIGHT BLUE-GREEN)

= PURPLE

= GREEN

= BLUE

= YELLOW

= ORANGE

= BROWN

= LIGHT RED

= DARK GRAY

= MEDIUM GRAY

= LIGHT GREEN

= LIGHT BLUE

= LIGHT GRAY

Color mapping affords a convenient method of changing the color of

the text display without changing the letters. By POKEing the appro

priate section of Color RAM, you can change the color of a whole

section of text on the screen without affecting the content of the text.

You can even use this method to make letters disappear by changing

their foreground colors to match the background color (or by chang

ing the background to match the foreground), and later make them

reappear by changing them back, or by changing the background to

a contrasting color. An interesting example program which changes

Color RAM quickly in BASIC can be found under the entry for 648

($288).

A change in the Operating System causes newer 64s to set all of

the Color RAM locations to the same value as the current back

ground color whenever the screen is cleared. Therefore, POKEing

character codes to the Screen RAM area will not appear to have any

effect, because the letters will be the same color as the background.

This can easily be turned to your advantage, however, because it

means that all you have to do to set all of Color RAM to a particular

value is to set the background color to that value (using the register
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at 53281, $D021), clear the screen, and return the background color

to the desired value.

The various graphics modes use this area differently than does

the regular text mode. In high-resolution bitmap mode, this area is

not used at all, but in multicolor bitmap mode it is used to determine

the color of the 11 bit-pair for a given 8 dot by 8 dot area.

In multicolor text mode, only the lowest three bits are used, so

only colors 0-7 may be selected. The fourth bit is used to determine

whether a character will be displayed in regular text or multicolor

text. Characters with a color value over 7 are displayed as multicolor

characters, with the color of the 11 bit-pair determined by the color

value minus 8. Characters with a color value under 8 are displayed

normally.

It should be noted that unlike the Screen RAM area, which can

be moved to any RAM location, the Color RAM area is fixed, and

will function normally regardless of where screen memory is located.

Complex Interface Adapter (CIA)

#1 Registers

Locations 56320-56335 ($DC00-$DC0F) are used to communicate

with the Complex Interface Adapter chip #1(CIA #1). This chip is a

successor to the earlier VIA and PIA devices used on the VIC-20 and

PET. This chip functions the same way as the VIA and PIA: It allows

the 6510 microprocessor to communicate with peripheral input and

output devices. The specific devices that CIA #1 reads data from and

sends data to are the joystick controllers, the paddle fire buttons, and r

the keyboard.

In addition to its two data ports, CIA #1 has two timers, each of

which can count an interval from a millionth of a second to a fif

teenth of a second. Or the timers can be hooked together to count

much longer intervals. CIA #1 has an interrupt line which is con

nected to the 6510 IRQ line. These two timers can be used to gener

ate interrupts at specified intervals (such as the 1/60 second inter

rupt used for keyboard scanning, or the more complexly timed inter

rupts that drive the tape read and write routines). As you will see

below, the CIA chip has a host of other features to aid in Input/Out

put functions.
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Location Range: 56320-56321 ($DC00-
$DC01)

CIA #1 Data Ports A and B

These registers are where the actual communication with outside de

vices takes place. Bits of data written to these registers can be sent to

external devices, while bits of data that those devices send can be

read here.

The keyboard is so necessary to the computer's operation that

you may have a hard time thinking of it as a peripheral device.

Nonetheless, it cannot be directly read by the 6510 microprocessor.

Instead, the keys are connected in a matrix of eight rows by eight

columns to CIA #1 Ports A and B. The layout of this matrix is

shown below.

READ PORT B (56321, $DC01)

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

O CO

S

8

2

STOP

/

/

N

V

X

LEFT

SHIFT

CRSR

DOWN

Q

t

O

u

T

E

(5

a

•

•

K

H

F

S

f3

SPACE

RIGHT

SHIFT

t

M

B

C

Z

fl

2

HOME

0

8

6

4

(7

CTRL

•

/

L

J

G

D

A

CRSR

RIGHT

*

P

I

Y

R

W

RETURN

1

£

+

9

7

5

3

DELETE
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As you can see, there are two keys which do not appear in the

matrix. The SHIFT LOCK key is not read as a separate key, but

rather is a mechanical device which holds the left SHIFT key switch

in a closed position. The RESTORE key is not read like the other

keys either. It is directly connected to the NMI interrupt line of the

6510 microprocessor, and causes an NMI interrupt to occur when

ever it is pressed (not just when it is pressed with the STOP key).

In order to read the individual keys in the matrix, you must first

set Port A for all outputs (255, $FF), and Port B for all inputs (0),

using the Data Direction Registers. Note that this is the default con

dition. Next, you must write a 0 in the bit of Data Port A that corre

sponds to the column that you wish to read, and a 1 to the bits that

correspond to columns you wish to ignore. You will then be able to

read Data Port B to see which keys in that column are being pushed.

A 0 in any bit position signifies that the key in the correspond

ing row of the selected column is being pressed, while a 1 indicates

that the key is not being pressed. A value of 255 ($FF) means that

no keys in that column are being pressed.

Fortunately for us all, an interrupt routine causes the keyboard

to be read, and the results are made available to the Operating Sys

tem automatically every 1/60 second. And even when the normal

interrupt routine cannot be used, you can use the Kernal SCNKEY

routine at 65439 ($FF9F) to read the keyboard.

These same data ports are also used to read the joystick control

lers. Although common sense might lead you to believe that you

could read the joystick that is plugged into the port marked Control

ler Port 1 from Data Port A, and the second joystick from Data Port

B, there is nothing common about the Commodore 64. Controller

Port 1 is read from Data Port B, and Controller Port 2 is read from

CIA #1 Data Port A.

Joysticks consist of five switches, one each for the up, down,

right, and left directions, and another for the fire button. The

switches are read like the key switches—if the switch is pressed, the

corresponding bit will read 0, and if it is not pressed, the bit will be

set to 1. From BASIC, you can PEEK the ports and use the AND and

NOT operators to mask the unused bits and invert the logic for eas

ier comprehension. For example, to read the joystick in Controller

Port 1, you could use the statement:

S1=NOT PEEK(56321)AND15

The meaning of the possible numbers returned are:

0=none pressed

l=up

2=down

4=left

5=up left

6=down left
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8=right

9=up right

10=down right

The same technique can be used for joystick 2, by substituting 56320

as the number to PEEK. By the way, the 3 and 7 aren't listed be

cause they represent impossible combinations like up-down.

To read the fire buttons, you can PEEK the appropriate port and

use the AND operator to mask all but Bit 4:

Tl =(PEEK(56321)AND16)/16

The above will return a 0 if the button is pressed, and a 1 if it is not.

Substitute location 56320 as the location to PEEK for Trigger Button 2.

Since CIA #1 Data Port B is used for reading the keyboard as

well as joystick 1, some confusion can result. The routine that checks

the keyboard has no way of telling whether a particular bit was set

to 0 by a keypress or one of the joystick switches. For example, if

you plug the joystick into Controller Port 1 and push the stick to the

right, the routine will interpret this as the 2 key being pressed, be

cause both set the same bit to 0. Likewise, when you read the joy

stick, it will register as being pushed to the right if the 2 key is being

pressed.

The problem of mistaking the keyboard for the joystick can be

solved by turning off the keyscan momentarily when reading the

stick with a POKE 56333,127:POKE 56320,255, and restoring it after

the read with a POKE 56333,129. Sometimes you can use the sim

pler solution of clearing the keyboard buffer after reading the joy

stick, with a POKE 198,0.

The problem of mistaking the joystick for a keypress is much

more difficult—there is no real way to turn off the joystick. Many

commercially available games just use Controller Port 2 to avoid the

conflict. So, if you can't beat them, sit back and press your joystick

to the left in order to slow down a program listing (the keyscan rou

tine thinks that it is the CTRL key).

As if all of the above were not enough, Port A is also used to

control which set of paddles is read by the SID chip, and to read the

paddle fire buttons. Since there are two paddles per joystick Control

ler Port, and only two SID registers for reading paddle positions,

there has to be a method for switching the paddle read from joystick

Port 1 to joystick Port 2.

When Bit 7 of Port A is set to 1 and Bit 6 is cleared to 0, the SID

registers read the paddles on Port 1. When Bit 7 is set to 0 and Bit 6

is set to 1, the paddles on Port 2 are read by the SID chip registers.

Note that this also conflicts with the keyscan routine, which is con

stantly writing different values to CIA #1 Data Port A in order to

select the keyboard column to read (most of the time, the value for

the last column is written to this port, which coincides with the
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selection of paddles on joystick Port 1). Therefore, in order to get an

accurate reading, you must turn off the keyscan IRQ and select

which joystick port you want to read. See POTX at 54297 ($D419),

which is the SID register where the paddles are read, for the exact

technique.

Although the SID chip is used to read the paddle settings, the

fire buttons are read at CIA #1 Data Ports A and B. The fire buttons

for the paddles plugged into Controller Port 1 are read at Data Port

B (56321, $DC01), while those for the paddles plugged into Control

ler Port 2 are read from Data Port A (56320, $DC00). The fire but

tons are read at Bit 2 and Bit 3 of each port (the same as the joystick

left and joystick right switches), and as usual, the bit will read 0 if

the corresponding button is pushed, and 1 if it is not.

Although only two of the four paddle values can be read at any

one time, you can always read all four paddle buttons. See the game

paddle input description at 54297 ($D419) for the BASIC statements

used to read these buttons.

Finally, Data Port B can also be used as an output by either

Timer A or B. It is possible to set a mode in which the timers do not

cause an interrupt when they run down (see the descriptions of Con

trol Registers A and B at 56334-5 $DC0E-F). Instead, they cause the

output on Bit 6 or 7 of Data Port B to change. Timer A can be set

either to pulse the output of Bit 6 for one machine cycle, or to toggle

that bit from 1 to 0 or 0 to 1. Timer B can use Bit 7 of this register

for the same purpose.

56320 $DC00 CIAPRA
Data Port Register A

Bit 0: Select to read keyboard column 0

Read joystick 2 up direction

Bit 1: Select to read keyboard column 1

Read joystick 2 down direction

Bit 2: Select to read keyboard column 2

Read joystick 2 left direction

Read paddle 1 fire button

Bit 3: Select to read keyboard column 3

Read joystick 2 right direction

Read paddle 2 fire button

Bit 4: Select to read keyboard column 4

Read joystick 2 fire button

Bit 5: Select to read keyboard column 5

Bit 6: Select to read keyboard column 6

Select to read paddles on Port A or B

Bit 7: Select to read keyboard column 7

Select to read paddles on Port A or B
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56321 $DC01 CIAPRB
Data Port Register B

Bit 0: Read keyboard row 0

Read joystick 1 up direction

Bit 1: Read keyboard row 1

Read joystick 1 down direction

Bit 2: Read keyboard row 2

Read joystick 1 left direction

Read paddle 1 fire button

Bit 3: Read keyboard row 3

Read joystick 1 right direction

Read paddle 2 fire button

Bit 4: Read keyboard row 4

Read joystick 1 fire button

Bit 5: Read keyboard row 5

Bit 6: Read keyboard row 6

Toggle or pulse data output for Timer A

Bit 7: Select to read keyboard column 7

Toggle or pulse data output for Timer B

Location Range: 56322-56323 ($DC02-
$DC03)

CIA #1 Data Direction Registers A and B

These Data Direction Registers control the direction of data flow

over Data Ports A and B. Each bit controls the direction of the data

on the corresponding bit of the port. If the bit of the Direction Regis

ter is set to a 1, the corresponding Data Port bit will be used for data

output. If the bit is set to a 0, the corresponding Data Port bit will be

used for data input. For example, Bit 7 of Data Direction Register A

controls Bit 7 of Data Port A, and if that direction bit is set to 0, Bit 7

of Data Port A will be used for data input. If the direction bit is set

to 1, however, data Bit 7 on Port A will be used for data output.

The default setting for Data Direction Register A is 255 (all out

puts), and for Data Direction Register B it is 0 (all inputs). This corre

sponds to the setting used when reading the keyboard (the keyboard

column number is written to Data Port A, and the row number is

then read in Data Port B).

56322 $DC02 CIDDRA
Data Direction Register A

Bit 0: Select Bit 0 of Data Port A for input or output (0=input,

1=output)

Bit 1: Select Bit 1 of Data Port A for input or output (0=input,

1=output)
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Bit 2: Select Bit 2 of Data Port A for input or output (0=input,

1=output)

Bit 3: Select Bit 3 of Data Port A for input or output (0=input,

1=output)

Bit 4: Select Bit 4 of Data Port A for input or output (0=input,

1=output)

Bit 5: Select Bit 5 of Data Port A for input or output (0=input,

1=output)

Bit 6: Select Bit 6 of Data Port A for input or output (0=input,

1=output)

Bit 7: Select Bit 7 of Data Port A for input or output (0=input,

1= output)

56323 $DC03 CIDDRB
Data Direction Register B

Bit 0: Select Bit 0 of Data Port B for input or output (0=input,

1=output)

Bit 1: Select Bit 1 of Data Port B for input or output (0=input,

1=output)

Bit 2: Select Bit 2 of Data Port B for input or output (0=input,

1=output)

Bit 3: Select Bit 3 of Data Port B for input or output (0=input,

1=output)

Bit 4: Select Bit 4 of Data Port B for input or output (0=input,

1=output)

Bit 5: Select Bit 5 of Data Port B for input or output (0=input,

1=output)

Bit 6: Select Bit 6 of Data Port B for input or output (0=input,

1=output)

Bit 7: Select Bit 7 of Data Port B for input or output (0=input,

1=output)

Location Range: 56324-56327 <$DC04-
$DC07)

Timers A and B Low and High Bytes

These four timer registers (two for each timer) have different func

tions depending on whether you are reading from them or writing to

them. When you read from these registers, you get the present value

of the Timer Counter (which counts down from its initial value to 0).

When you write data to these registers, it is stored in the Timer

Latch, and from there it can be used to load the Timer Counter using

the Force Load bit of Control Register A or B (see 56334-5, $DC0E-F

below).

These interval timers can hold a 16-bit number from 0 to 65535,

in normal 6510 low-byte, high-byte format (VALUE=LOW

BYTE+256*HIGH BYTE). Once the Timer Counter is set to an initial
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value, and the timer is started, the timer will count down one num

ber every microprocessor clock cycle. Since the clock speed of the 64

(using the American NTSC television standard) is 1,022,730 cycles

per second, every count takes approximately a millionth of a second.

The formula for calculating the amount of time it will take for the

timer to count down from its latch value to 0 is:

TIME=LATCH VALUE/CLOCK SPEED

where LATCH VALUE is the value written to the low and high timer

registers (LATCH VALUE=TIMER LOW+256*TIMER HIGH),

and CLOCK SPEED is 1,022,730 cycles per second for American

(NTSC) standard television monitors, or 985,250 for European (PAL)

monitors.

When Timer Counter A or B gets to 0, it will set Bit 0 or 1 in the

Interrupt Control Register at 56333 ($DC0D). If the timer interrupt

has been enabled (see 56333, $DC0D), an IRQ will take place, and

the high bit of the Interrupt Control Register will be set to 1. Alter

nately, if the Port B output bit is set, the timer will write data to Bit

6 or 7 of Port B. After the timer gets to 0, it will reload the Timer

Latch Value, and either stop or count down again, depending on

whether it is in one-shot or continuous mode (determined by Bit 3 of

the Control Register).

Although usually a timer will be used to count the micro

processor clock cycles, Timer A can count either the micro

processor clock cycles or external pulses on the CTN line, which is

connected to pin 4 of the User Port.

Timer B is even more versatile. In addition to these two sources,

Timer B can count the number of times that Timer A goes to 0. By

setting Timer A to count the microprocessor clock, and setting Timer

B to count the number of times that Timer A zeros, you effectively

link the two timers into one 32-bit timer that can count up to 70

minutes with accuracy within 1/15 second.

In the 64, CIA #1 Timer A is used to generate the interrupt

which drives the routine for reading the keyboard and updating the

software clock. Both Timers A and B are also used for the timing of

the routines that read and write tape data. Normally, Timer A is set

for continuous operation, and latched with a value of 149 in the low

byte and 66 in the high byte, for a total Latch Value of 17045. This

means that it is set to count to 0 every 17045/1022730 seconds, or

approximately 1/60 second.

For tape reads and writes, the tape routines take over the IRQ

vectors. Even though the tape write routines use the on-chip I/O

port at location 1 for the actual data output to the cassette, reading

and writing to the cassette uses both CIA #1 Timer A and Timer B

for timing the I/O routines.
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56324
Timer A (low byte)

56325
Timer A (high byte)

56326
Timer B (low byte)

56327
Timer B (high byte)

$DC04

$DC05

$DC06

$DC07

TIMALO

TIMAHI

TIMBLO

TIMBHI

Location Range: 56328-56331 ($DC08-
$DCOB)

Time of Day Clock (TOD)

In addition to the two general-purpose timers, the 6526 CIA chip has

a special-purpose Time of Day Clock, which keeps time in a format

that humans can understand a little more easily than microseconds.

This Time of Day Clock even has an alarm, which can cause an

interrupt at a specific time. It is organized in four registers, one each

for hours, minutes, seconds, and tenths of seconds. Each register

reads out in Binary Coded Decimal (BCD) format, for easier conver

sion to ASCII digits. A BCD byte is divided into two nybbles, each

of which represents a single digit in base 10. Even though a four-bit

nybble can hold a number from 0 to 15, only the base 10 digits of 0-

9 are used. Therefore, 10 o'clock would be represented by a byte in

the hours register with the nybbles 0001 and 0000, which stand for

the digits 1 and 0. The binary value of this byte would be 16 (16

times the high nybble plus the low nybble). Each of the other reg

isters operates in the same manner. In addition, Bit 7 of the hours

register is used as an AM/PM flag. If that bit is set to 1, it indicates

PM, and if it is set to 0, the time is AM.

The Time of Day Clock Registers can be used for two purposes,

depending on whether you are reading them or writing to them. If

you are reading them, you will always be reading the time. There is

a latching feature associated with reading the hours register in order

to solve the problem of the time changing while you are reading the

registers. For example, if you were reading the hours register just as

the time was changing from 10:59 to 11:00, it is possible that you

would read the 10 in the hours register, and by the time you read

the minutes register it would have changed from 59 to 00. Therefore,

you would read 10:00 instead of either 10:59 or 11:00.

To prevent this kind of mistake, the Time of Day Clock Regis

ters stop updating as soon as you read the hours register, and do not

start again until you read the tenths of seconds register. Of course,
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the clock continues to keep time internally even though it does not

update the registers. If you want to read only minutes, or seconds or

tenths of seconds, there is no problem, and no latching will occur.

But anytime you read hours, you must follow it by reading tenths of

seconds, even if you don't care about them, or else the registers will

not continue to update.

Writing to these registers either sets the time or the alarm, de

pending on the setting of Bit 7 of Control Register B (56335, $DC0F).

If that bit is set to 1, writing to the Time of Day registers sets the

alarm. If the bit is set to 0, writing to the Time of Day registers sets

the Time of Day clock. In either case, as with reading the registers,

there is a latch function. This function stops the clock from updating

when you write to the hours register. The clock will not start again

until you write to the tenths of seconds registers.

The only apparent use of the Time of Day Clock by the 64's

Operating System is in the BASIC RND statement. There, the sec

onds and tenths of seconds registers are read and their values used

as part of the seed value for the RND(O) command.

Nonetheless, this clock can be an invaluable resource for the 64

user. It will keep time more accurately than the software clock main

tained at locations 160-162 ($A0-$A2) by the Timer A interrupt rou

tine. And unlike that software clock, the Time of Day Clock will not

be disturbed when I/O operations disrupt the Timer A IRQ, or when

the IRQ vector is diverted elsewhere. Not even a cold start RESET

will disrupt the time. For game timers, just set the time for

00:00:00:0 and it will keep track of elapsed time in hours, minutes,

seconds and tenths of seconds format.

The following digital clock program, written in BASIC, will

demonstrate the use of these timers:

10 PRINT CHR$(147):GOSUB 200

20 H=PEEK(56331):POKE 1238,(H AND 16)/16+48:POKE 1

239,(H AND 15)+ 48

30 M=PEEK(56330):POKE 1241,(M AND 240)/l6+48:POKE

{SPACE}1242,(M AND 15)+ 48

40 S=PEEK(56329):POKE 1244,(S AND 240)/l6+48:POKE

{SPACE}1245,(S AND 15)+ 48

50 T=PEEK(56328)AND15:POKE 1247,T+48:GOTO 20

200 INPUT"WHAT IS THE HOUR";H$:IF H$=""THEN 200

210 H=0:IF LEN(H$)>1 THEN H=16

220 HH=VAL(RIGHT$(H$,1)):H=H+HH:POKE56331,H

230 INPUT "WHAT IS THE MINUTE";M$:IF M$=""THEN 200

240 M=0:IF LEN(M$)>1 THEN M=16*VAL(LEFT$(M$,1))
250 MM=VAL(RIGHT$(M$#1))*M=M+MM:POKE56330,M

260 INPUT "WHAT IS THE SECOND";S$:IF S$=""THEN 200

270 S=0:IF LEN(S$)>1 THEN S=16*VAL(LEFT$(S$,1))
280 SS=VAL(RIGHT$(S$,1)):S=S+SS:POKE56329,S:POKE 5

6328,0
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290 POKE 53281,1:PRINTCHR?(147):POKE 53281,6

300 POKE 1240,58:POKE 1243,58:POKE 1246,58:GOTO 20

56328 $DC08 TODTEN
Time of Day Clock Tenths of Seconds

Bits 0-3: Time of Day tenths of second digit (BCD)

Bits 4-7: Unused

56329 $DC09 TODSEC
Time of Day Clock Seconds

Bits 0-3: Second digit of Time of Day seconds (BCD)

Bits 4-6: First digit of Time of Day seconds (BCD)

Bit 7: Unused

56330 $DC0A TODMIN
Time of Day Clock Minutes

Bits 0-3: Second digit of Time of Day minutes (BCD)

Bits 4-6: First digit of Time of Day minutes (BCD)

Bit 7: Unused

56331 $DC0B TODHRS
Time of Day Clock Hours

Bits 0-3: Second digit of Time of Day hours (BCD)

Bit 4: First digit of Time of Day hours (BCD)

Bits 5-6: Unused

Bit 7: AM/PM Flag (1=PM, 0=AM)

56332 $DC0C CIASDR
Serial Data Port

The CIA chip has an on-chip serial port, which allows you to send

or receive a byte of data one bit at a time, with the most significant

bit (Bit 7) being transferred first. Control Register A at 56334

($DC0E) allows you to choose input or output modes. In input

mode, a bit of data is read from the SP line (pin 5 of the User Port)

whenever a signal on the CNT line (pin 4) appears to let you know

that it is time for a read. After eight bits are received this way, the

data is placed in the Serial Port Register, and an interrupt is generat

ed to let you know that the register should be read.

In output mode, you write data to the Serial Port Register, and it

is sent out over the SP line (pin 5 of the User Port), using Timer A

for the baud rate generator. Whenever a byte of data is written to

this register, transmission will start as long as Timer A is running

and in continuous mode. Data is sent at half the Timer A rate, and

an output will appear on the CNT line (pin 4 of the User Port)
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whenever a bit is sent. After all eight bits have been sent, an inter

rupt is generated to indicate that it is time to load the next byte to

send into the Serial Register.

The Serial Data Register is not used by the 64, which does all of

its serial I/O through the regular data ports.

56333 $DCOD CIAICR
Interrupt Control Register

Bit 0: Read/ did Timer A count down to 0? (l=yes)

Write/enable or disable Timer A interrupt (1= enable,

0=disable)

Bit 1: Read/ did Timer B count down to 0? (l=yes)

Write/enable or disable Timer B interrupt (1=enable,

0=disable)

Bit 2: Read/ did Time of Day Clock reach the alarm time? (l=yes)

Write/enable or disable TOD clock alarm interrupt (1=enable,

0 = disable)

Bit 3: Read/ did the serial shift register finish a byte? (l=yes)

Write/enable or disable serial shift register interrupt

(1=enable, 0=disable)

Bit 4: Read/ was a signal sent on the flag line? (l=yes)

Write/enable or disable FLAG line interrupt (1=enable,

0=disable)

Bit 5: Not used

Bit 6: Not used

Bit 7: Read/ did any CIA #1 source cause an interrupt? (l=yes)

Write/set or clear bits of this register (l=bits written with

1 will be set, 0=bits written with 1 will be cleared)

This register is used to control the five interrupt sources on the 6526

CIA chip. These sources are Timer A, Timer B, the Time of Day

Clock, the Serial Register, and the FLAG line. Timers A and B cause

an interrupt when they count down to 0. The Time of Day Clock

generates an interrupt when it reaches the ALARM time. The Serial

Shift Register interrupts when it compiles eight bits of input or out

put. An external signal pulling the CIA hardware line called FLAG

low will also cause an interrupt (on CIA #1, this FLAG line is con

nected to the Cassette Read line of the Cassette Port).

Even if the condition for a particular interrupt is satisfied, the in

terrupt must still be enabled for an IRQ actually to occur. This is

done by writing to the Interrupt Control Register. What happens

when you write to this register depends on the way that you set Bit

7. If it is set to 0, any other bit that is written to with a 1 will be

cleared, and the corresponding interrupt will be disabled. If you set

Bit 7 to 1, any bit written to with a 1 will be set, and the correspond

ing interrupt will be enabled. In either case, the interrupt enable

flags for those bits written to with a 0 will not be affected.
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For example, in order to disable all interrupts from BASIC, you

could POKE 56333,127. This sets Bit 7 to 0, which clears all of the

other bits, since they are all written with l's. Don't try this from

BASIC immediate mode, as it will turn off Timer A which causes the

IRQ for reading the keyboard, so that it will in effect turn off the

keyboard.

To turn on the Timer A interrupt, a program could POKE

56333,129. Bit 7 is set to 1 and so is Bit 0, so the interrupt which

corresponds to Bit 0 (Timer A) is enabled.

When you read this register, you can tell if any of the conditions

for a CIA interrupt were satisfied because the corresponding bit will

be set to a 1. For example, if Timer A counts down to 0, Bit 0 of this

register will be set to 1. If, in addition, the mask bit that corresponds

to that interrupt source is set to 1, and an interrupt occurs, Bit 7 will

also be set. This allows a multi-interrupt system to read one bit and

see if the source of a particular interrupt was CIA #1. You should

note, however, that reading this register clears it, so you should pre

serve its contents in RAM if you want to test more than one bit.

56334 $DC0E CIACRA
Control Register A

Bit 0: Start Timer A (1= start, 0=stop)

Bit 1: Select Timer A output on Port B (1=Timer A output appears

on Bit 6 of Port B)

Bit 2: Port B output mode (l=toggle Bit 6, 0=pulse Bit 6 for one

cycle)

Bit 3: Timer A run mode (1=one-shot, 0=continuous)

Bit 4: Force latched value to be loaded to Timer A counter (1=force

load strobe)

Bit 5: Timer A input mode (1=count microprocessor cycles, 0=count

signals on CNT line at pin 4 of User Port)

Bit 6: Serial Port (56332, $DC0C) mode (l=output, 0=input)

Bit 7: Time of Day Clock frequency (1=50 Hz required on TOD pin,

0 = 60 Hz)

Bits 0-3. This nybble controls Timer A. Bit 0 is set to 1 to start the

timer counting down, and set to 0 to stop it. Bit 3 sets the timer for

one-shot or continuous mode.

In one-shot mode, the timer counts down to 0, sets the counter

value back to the latch value, and then sets Bit 0 back to 0 to stop

the timer. In continuous mode, it reloads the latch value and starts

all over again.

Bits 1 and 2 allow you to send a signal on Bit 6 of Data Port B

when the timer counts. Setting Bit 1 to 1 forces this output (which

overrides the Data Direction Register B Bit 6, and the normal Data

Port B value). Bit 2 allows you to choose the form this output to Bit

6 of Data Port B will take. Setting Bit 2 to a value of 1 will cause Bit
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6 to toggle to the opposite value when the timer runs down (a value

of 1 will change to 0, and a value of 0 will change to 1). Setting Bit 2

to a value of 0 will cause a single pulse of a one machine-cycle dura

tion (about a millionth of a second) to occur.

Bit 4. This bit is used to load the Timer A counter with the value

that was previously written to the Timer Low and High Byte Reg

isters. Writing a 1 to this bit will force the load (although there is no

data stored here, and the bit has no significance on a read).

Bit 5. Bit 5 is used to control just what it is Timer A is counting.

If this bit is set to 1, it counts the microprocessor machine cycles

(which occur at the rate of 1,022,730 cycles per second). If the bit is

set to 0, the timer counts pulses on the CNT line, which is connected

to pin 4 of the User Port. This allows you to use the CIA as a fre

quency counter or an event counter, or to measure pulse width or

delay times of external signals.

Bit 6. Whether the Serial Port Register is currently inputting or

outputting data (see the entry for that register at 56332, $DC0C for

more information) is controlled by this bit.

Bit 7. This bit allows you to select from software whether the

Time of Day Clock will use a 50 Hz or 60 Hz signal on the TOD pin

in order to keep accurate time (the 64 uses a 60 Hz signal on that

pin).

56335 $DC0F CIACRB
Control Register B

Bit 0: Start Timer B (1=start, 0=stop)

Bit 1: Select Timer B output on Port B (1=Timer B output appears

on Bit 7 of Port B)

Bit 2: Port B output mode (1=toggle Bit 7, 0=pulse Bit 7 for one

cycle)

Bit 3: Timer B run mode (l=one-shot, 0=continuous)

Bit 4: Force latched value to be loaded to Timer B counter (1=force

load strobe)

Bits 5-6: Timer B input mode

00 = Timer B counts microprocessor cycles

01 = Count signals on CNT line at pin 4 of User Port

10 = Count each time that Timer A counts down to 0

11 = Count Timer A 0's when CNT pulses are also present

Bit 7: Select Time of Day write (0=writing to TOD registers sets

alarm, 1=writing to TOD registers sets clock)

Bits 0-3. This nybble performs the same functions for Timer B

that Bits 0-3 of Control Register A perform for Timer A, except that

Timer B output on Data Port B appears at Bit 7, and not Bit 6.

Bits 5 and 6. These two bits are used to select what Timer B

counts. If both bits are set to 0, Timer B counts the microprocessor
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machine cycles (which occur at the rate of 1,022,730 cycles per sec

ond). If Bit 6 is set to 0 and B^t 5 is set to 1, Timer B counts pulses

on the CNT line, which is connected to pin 4 of the User Port. If Bit

6 is set to 1 and Bit 5 is set to 0, Timer B counts Timer A underflow

pulses, which is to say that it counts the number of times that Timer

A counts down to 0. This is used to link the two timers into one 32-

bit timer that can count up to 70 minutes with accuracy to within 1/15

second. Finally, if both bits are set to 1, Timer B counts the num

ber of times that Timer A counts down to 0 and there is a signal on

the CNT line (pin 4 of the User Port).

Bit 7. Bit 7 controls what happens when you write to the Time

of Day registers. If this bit is set to 1, writing to the TOD registers

sets the ALARM time. If this bit is cleared to 0, writing to the TOD

registers sets the TOD clock.

Location Range: 56336-56575 ($DC10-
$DCFF)

CIA #1 Register Images

Since the CIA chip requires only enough addressing lines to handle

16 registers, none of the higher bits are decoded when addressing

the 256-byte area that has been assigned to it. The result is that

every 16-byte area in this 256-byte block is a mirror of every other.

Even so, for the sake of clarity in your programs it is advisable to

use the base address of the chip, and not use higher addresses to

communicate with the chip.

Complex Interface Adapter

(CIA) #2 Registers

Locations 56576-56591 ($DD00-$DD0F) are used to address the

Complex Interface Adapter chip #2 (CIA #2). Since the chip itself is

identical to CIA #1, which is addressed at 56320 ($DC00), the dis

cussion here will be limited to the use which the 64 makes of this

particular chip. For more general information on the chip registers,

please see the corresponding entries for CIA #1.

One of the significant differences between CIA chips #1 and #2

is the use to which Data Ports A and B are put. The peripheral input

and output devices that CIA #2 controls are those on the Serial Bus

(such as the 1541 Disk Drive and 1525 printer), the RS-232 device

(which is used for telecommunications), and the User Port, an eight-

bit parallel port that can be turned to whatever purpose the user de

sires. In addition, Data Port A has the important task of selecting

the 16K bank of memory that will be used by the VIC-II chip for

graphics.
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Another significant difference between CIA chips #1 and #2 is

that the interrupt line of CIA #1 is wired to the 6510 IRQ line, while

that of CIA #2 is wired to the NMI line. This means that interrupts

from this chip cannot be masked by setting the Interrupt disable flag

(SEI). They can be disabled from CIA's Mask Register, though. Be

sure to use the NMI vector when setting up routines to be driven by

interrupts generated by this chip.

Location Range: 56576-56577 <$DD00-
$DD01)

CIA #2 Data Ports A and B

These registers are where the communication with the Serial Bus,

RS-232 device, and User Port take place. The Serial Bus is like the

IEEE bus which is used by the PET, in that it allows more than one

device to be connected to the port at a time, in a daisychain arrange

ment. Since each byte of data is sent one bit at a time, however, the

Serial Bus is at least eight times slower than the IEEE. It is presently

used to control the 1541 Disk Drive and 1525 printer, and other de

vices (such as printer interfaces for Centronics-type parallel printers

and stringy floppy wafer tape storage units) can be placed on this

bus.

Data Port A is used for communication with the Serial Bus. Bits

5 and 7 are used for Serial Bus Data Output and Input respectively,

and Bits 4 and 6 are used for the Serial Bus Clock Pulse Output and

Input. Bit 3 of Data Port A is used to send the ATN signal on the

Serial Bus.

The 64 has built-in software to handle RS-232 communications

through a modem or other device plugged in the RS-232/User Port.

The RS-232 device uses Bit 2 of Data Port A for data output (it is the

only line from Port A that is connected to the RS-232/User Port

jack). It also makes heavy use of Port B, using Bit 7 for the Data Set

Ready (DSR) signal, Bit 6 for the Clear to Send (CTS), Bit 4 for the

Carrier Detect (DCD), Bit 3 for the Ring Indicator (RI), Bit 2 for Data

Terminal Ready (DTR), Bit 1 for Request to Send (RTS), and Bit 0 for

data input. See locations 659-660 ($293-$294) for more details on

the RS-232 device.

All of the data lines which the RS-232 device uses are also

available to the user as part of the User Port. All of the Port B data

lines, and Bit 2 of Port A, are brought out to the User Port connector

on the back of the 64. These data bits are utilized in the normal

way: The port connections are made to TTL-level input or output de

vices, and the direction of data is determined by the Data Direction

registers.

In addition, the User Port has pins connected to the two CIA

Serial Ports (whose eight-bit shift registers are well-suited for serial-
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to-parallel and parallel-to-serial conversion), and the two CNT lines

which aid in the operation of the Serial Ports. The CNT lines can

also be used in conjunction with the CIA Timers, and allow them to

be used as frequency counters, event counters, interval timers, etc.

The advanced features of the CIA chip make almost any type of in

terfacing application possible, and in the near future we will proba

bly see many interesting applications for the User Port on the 64. A

pin description of the User Port connector is provided below:

User

Port

Pin

1

2

3

4

5

6

7

8

9

10

11

12

A

B

C

D

E

F

H

J
K

L

M

N

CIA

Line

CNT1

SP1

CNT2

SP2

PC2

FLAG2

PBO

PB1

PB2

PB3

PB4

PB5

PB6

PB7

PA2

RS-232

DB-25

Pin

1

3

4

20

22

8

5

6

2

7

Description

Ground

+5 Volts (100 milliamps maximum)

RESET (grounding this pin causes a cold

start)

CIA #1 Serial Port and Timer Counter

CIA #1 Serial Data Port

CIA #2 Serial Port and Timer Counter

CIA #2 Serial Data Port

CIA #2 handshaking line

Connected to the ATN line of the Serial

Bus

9 Volts AC (+phase, 50 milliamps

maximum)

9 Volts AC (-phase, 50 milliamps

maximum)

Ground

Ground

CIA#2 handshaking line

Port B Bit 0—RS-232 Received Data (SIN)

Port B Bit 1—RS-232 Request to Send

(RTS)

Port B Bit 2—RS-232 Data Terminal

Ready (DTR)

Port B Bit 3—RS-232 Ring Indicator (RI)

Port B Bit 4—RS-232 Carrier Detect

(DCD)

Port B Bit 5

Port B Bit 6—RS-232 Clear to Send (CTS)

Port B Bit 7—RS-232 Data Set Ready

(DSR)

Port A Bit 2—RS-232 Transmitted Data

(Sout)

Ground
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One of the handshaking lines on the above chart, PC2, was not cov

ered in the discussion of CIA #1, because that line of CIA #1 is not

connected to anything. The CIA #2 PC line is accessible from the

User Port, however. This line will go low for one cycle following a

read or write of Port B on CIA #2. This signal lets external devices

know when data has been read or written.

Bits 0 and 1 of CIA #2 Port A have an extremely important

function. As mentioned in the section on the VIC-II chip (53248,

$D000), the video chip can address only 16K of memory at a time,

and all graphics data must be stored in that 16K block in order to be

displayed. Within this area, sprite graphics data may be placed in

any of 256 groups of 64 bytes each. Character data can be stored in

any of eight 2K blocks. Text screen memory may be in any of 16 IK

areas, and bitmap screen memory may be in either of two 8K

sections.

When you turn the power on, the VIC-II uses the bottom 16K of

memory for graphics. Unfortunately, this block of memory is also

used extensively for other important purposes. Though some means

of eliminating these conflicts are discussed above, in many situations

you will want to change from the default 16K bank at the low end of

memory.

Bits 0 and 1 select the current 16K bank for video memory from

the four possible choices using the following bit patterns:

00 (bit value of 0) Bank 3 (49152-65535, $C000-$FFFF)

01 (bit value of 1) Bank 2 (32768-49151, $8000-$BFFF)

10 (bit value of 2) Bank 1 (16384-32767, $4000-$7FFF)

11 (bit value of 3) Bank 0 (0-16383, $0-$3FFF)

The technique for making this change from BASIC is discussed be

low. But before we go ahead and start changing banks, let's briefly

review the contents of these areas, and the considerations for using

them for graphics.

Block 0. This is normally used for system variables and BASIC

program text. Locations 1024-2048 ($400-$800) are reserved for the

default position of screen memory.

There is an additional limitation on memory usage of this block,

as the VIC-II sees the character generator ROM at 4096-8191 ($1000-

$1FFF), making this portion of memory unavailable for other graph

ics data. Generally, there is little free space here for graphics display

data. Locations 679-767 ($2A7-$2FF) are unused, and could hold one

sprite shape (number 11) or data for 11 characters. The area from

820-1023 ($334-$3FF), which includes the cassette I/O buffer, is

available for graphics memory, and is large enough to hold three

sprite shapes (numbers 13, 14, and 15), or data for 25 characters

(numbers 103-127). But getting enough memory for bitmap graphics

requires that you either reserve memory after the end of BASIC text
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by lowering the end of BASIC pointer at 56 ($38), or raise the start

of BASIC pointer at 44 ($2C). See the entries for these pointers for

more details.

Block 1. Block 1 is normally used for BASIC program storage.

When using this bank, the VIC-II chip does not have access to the

character generator ROM. Providing that you lower the top of mem

ory so that BASIC programs do not interfere, this area is wide open

for sprite shapes, character graphics, and bitmap graphics.

The drawbacks to using this bank are the unavailability of the

character ROM and the limitation on BASIC program space (as little

as 14K). The absence of the character ROM is a relatively minor nui

sance, because you can always switch in the ROM and copy any or

all of the characters to RAM (see the entries for location 1 and the

alternate entry for 53248, $D000, the Character ROM, for details).

This block may be a good alternate choice to avoid potential conflicts

with other applications that use higher memory.

Block 2. The third block (Block 2) consists of 8K of RAM, half of

which is seen by the VIC-II chip as character ROM, and the 8K

BASIC interpreter ROM. The BASIC ROM area is available for

graphics. This is possible because of the 64's special addressing. The

VIC-II chip reads only from RAM, and thus sees the RAM under

neath the BASIC ROM even if the 6510 has ROM switched in. The

6510, on the other hand, always writes to RAM, even when dealing

with memory it reads as ROM. Whatever is written to the RAM

underlying the BASIC ROM is displayed normally by the VIC-II

chip. This opens up an extra 8K area for sprites and character data

under the BASIC ROM.

You should keep in mind that while you can write to this area,

you cannot read it from BASIC. This may not be a serious problem

when it comes to character sets and sprite data, but it's more of a

drawback if you want to use this RAM for screen memory.

For example, the Operating System has to read the text screen

to move the cursor properly, and if it reads the ROM value instead

of the RAM screen data, it gets hopelessly confused, making it im

possible to type in any commands.

Likewise, you would not be able to read the high-resolution

screen if it were placed here, without some machine language trick

ery. With locations 36864-40959 ousted by the character ROM, only

4K of true RAM remains for use as screen memory, not enough for a

complete high-resolution screen. Therefore, this block is not recom

mended for use in bitmap mode if your program needs to check the

screen. Otherwise, this is a good place for graphics memory, particu

larly if you need to emulate the screen configuration of the PET.

Block 3. Normally Block 3 contains 4K of RAM that is complete

ly unused by the system, 4K of I/O registers, and the 8K Operating

System Kernal ROM. It is very convenient to use when you need a
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lot of memory space for both graphics and a BASIC program. Al

though the character ROM is not available, it can be copied to RAM.

The area under the Kernal ROM can be used as explained above.

One possible conflict that you should be aware of is that the current

version of the DOS support program is written to reside at 52224

($CC00). It would be safest to avoid using 52224-53247 for graphics

if you plan to use DOS support.

Changing banks. Once you have selected a bank of 16K to use,

the procedure for making the change from BASIC is as follows:

1. Set the Data Direction Register if necessary. In order to use Bits 0

and 1 of Port A to change banks, these bits must be set as outputs in

Data Direction Register A. Since this is the default condition on

powering-up, this step normally will not be needed.

2. Select a bank. Banks 0-3 can be chosen by entering the following

lines:

POKE 56578, PEEK(56578) OR 3: REM SET FOR OUTPUT IF NOT

ALREADY

POKE 56576,(PEEK(56576) AND 252) OR (3-BANK): REM BANK IS

BANK #, MUST BE 0-3

3. Set the VIC-II register for character memory. As explained at the

entry for location 53272 ($D018), the formula for this is:

POKE 53272, (PEEK(53272) AND 240) OR TK: REM TK IS 2 KBYTE

OFFSET FROM BEGINNING OF BLOCK

4. Set the VIC-II register for display memory. As explained at the en

try for location 53272 ($D018), the formula for this is:

POKE 53272, (PEEK(53272) AND 15) OR K*16: REM K IS KBYTE

OFFSET FROM BEGINNING OF BLOCK

Since steps 2 and 3 operate on the same register, you could combine

these steps and just POKE 53272, (16*K+TK).

4. Set the Operating System pointer for display memory at 648

($288). Even though you have just told the VIC-II chip where to dis

play memory for the screen, the Operating System does not yet

know where to write its text characters. Let it know with this state

ment:

POKE 648,AD/256: REM AD IS THE ACTUAL ADDRESS OF

SCREEN MEMORY

After you make this change, you must watch out for the STOP/

RESTORE key combination. The BRK initialization changes the screen

display default to location 1024 in Bank 0, but not the Operating

System pointer at 648 ($288). As a result, what you are typing will

not be displayed on the screen. The computer will lock up until you

turn the power off and back on again. The simplest way to avoid

this problem is to disable the RESTORE key entirely (see the entries
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for 792 ($318) and 808 ($328) for more information).

Below is a sample program which switches the screen to Bank 3.

It includes a machine language transfer routine to move the ROM

character set to RAM, and a short interrupt routine to correct the

RESTORE key problem. After the switch is made, a loop is used to

POKE characters to the new screen memory area. Next, the character

data is slowly erased, to show that the character set is now in RAM.

Then, a loop is used to read the locations of the character set, and

write to the same locations. This demonstrates that the 6510 reads

the Kernal ROM when you PEEK those locations, but POKEs to the

RAM which is being displayed. Finally, the machine language move

is used again to show how quickly the set is restored.

20 FOR 1=1 TO 33:READ A:POKE 49151+1,A:NEXT: REM S

ET UP ML ROUTINE

30 GOSUB 200: REM ML COPY OF ROM CHARACTER SET TO

{SPACE}RAM

40 POKE 56576,PEEK(56576) AND 252: REM{2 SPACES}ST

EP 1, ENABLE BANK 3

50 POKE 53272,44: REM STEPS 2-3, POINT{2 SPACES}VI
C-II TO SCREEN AND CHARACTER MEMORY

60 REM SCREEN OFFSET IS 2*16, CHARACTER{2 SPACES}O

FFSET IS 1212

70 POKE 648,200: REM STEP 4, POINT OS TO SCREEN AT

51200 (200*256)

80 PRINT CHR$(147): REM CLEAR SCREEN

90 FOR 1=53236 TO 53245: READ A: POKE I,A: NEXT: R

EM NEW INTERRUPT ROUTINE

100 POKE 53246, PEEK(792) -.POKE 53247,PEEK( 793): REM

SAVE OLD NMI VECTOR

110 POKE 792,244: POKE 793,207: REM ROUTE THE INTE

RRUPT THROUGH THE NEW ROUTINE

120 FOR 1=0 TO 255: POKE 51400+1,I:POKE 55496+1,1:

NEXT

125 REM POKE CHARACTERS TO SCREEN

130 FOR J=l TO 8: FOR I=61439+J TO 1+2048 STEP 8

140 POKE 1,0:NEXT I,J: REM ERASE CHARACTER SET

150 FOR 1=61440 TO I+2048:POKE I,PEEK(I):NEXT: REM

POKE ROM TO RAM

160 GOSUB 200:END: REM RESTORE CHARACTER SET

200 POKE 56334, PEEK( 56334) AND 254: REM DISABLE IN

TERRUPTS

210 POKE 1,PEEK(1) AND 251: REM SWITCH CHARACTER R

OM INTO 6510 MEMORY

220 SYS 49152: REM COPY ROM CHARACTER SET TO RAM A

T 61440

230 POKE 1,PEEK(1) OR 4: REM SWITCH CHARACTER ROM

{SPACE}OUT OF 6510 MEMORY

240 POKE 56334,PEEK(56334) OR 1: REM ENABLE INTERR

UPTS
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250 RETURN

300 REM DATA FOR ML PROGRAM TO COPY CHARACTER SET

{SPACE}TO RAM

310 DATA169,0,133,251,133,253,169,208,133,252,169,

240,133,254,162,16

320 DATA160, 0,177, 251,145, 253,136, 208, 249, 230, 252,

230,254,202,208,240,96

330 REM NEXT IS ML PROGRAM TO MAKE THE RESTORE KEY

RESET OS POINTER TO SCREEN

340 DATA 72,169,4,141,136,02,104,108,254,207

See also the sample program showing how to configure your 64 like

a PET at location 43 ($2B).

56576 $DDOO CI2PRA
Data Port Register A

Bits 0-1: Select the 16K VIC-II chip memory bank (ll=bank 0,

00=bank3)

Bit 2: RS-232 data output (Sout)/Pin M of User Port

Bit 3: Serial bus ATN signal output

Bit 4: Serial bus clock pulse output

Bit 5: Serial bus data output

Bit 6: Serial bus clock pulse input

Bit 7: Serial bus data input

56577 $DD01 CI2PRB
Data Port Register B

Bit 0: RS-232 data input (SIN)/ Pin C of User Port

Bit 1: RS-232 request to send (RTS)/ Pin D of User Port

Bit 2: RS-232 data terminal ready (DTR)/ Pin E of User Port

Bit 3: RS-232 ring indicator (RI)/ Pin F of User Port

Bit 4: RS-232 carrier detect (DCD)/ Pin H of User Port

Bit 5: Pin J of User Port

Bit 6: RS-232 clear to send (CTS)/ Pin K of User Port

Toggle or pulse data output for Timer A

Bit 7: RS-232 data set ready (DSR)/ Pin L of User Port

Toggle or pulse data output for Timer B

Location Range: 56578-56579 <$DD02-
$DD03)

CIA #2 Data Direction Registers A and B

These Data Direction registers control the direction of data flow over

Data Ports A and B. For more details on the operation of these regis

ters, see the entry for the CIA #1 Data Direction Registers at 56322

($DC02).
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The default setting for Data Direction Register A is 63 (all bits

except 6 and 7 are outputs), and for Data Direction Register B the

default setting is 0 (all inputs). Bits 1 and 2 of Port B are changed to

output when the RS-232 device is opened.

56578 $DD02 C2DDRA
Data Direction Register A

Bit 0: Select Bit 0 of data Port A for input or output (0=input,

1=output)

Bit 1: Select Bit 1 of data Port A for input or output (0=input,

1=output)

Bit 2: Select Bit 2 of data Port A for input or output (0=input,

1= output)

Bit 3: Select Bit 3 of data Port A for input or output (0=input,
1=output)

Bit 4: Select Bit 4 of data Port A for input or output (0=input,

1=output)

Bit 5: Select Bit 5 of data Port A for input or output (0=input,
1= output)

Bit 6: Select Bit 6 of data Port A for input or output (0=input,

1=output)

Bit 7: Select Bit 7 of data Port A for input or output (0=input,
1=output)

56579 $DD03 C2DDRB
Data Direction Register B

Bit 0: Select Bit 0 of data Port B for input or output (0=input,

1=output)

Bit 1: Select Bit 1 of data Port B for input or output (0=input,

1= output)

Bit 2: Select Bit 2 of data Port B for input or output (0=input,

1=output)

Bit 3: Select Bit 3 of data Port B for input or output (0=input,

1=output)

Bit 4: Select Bit 4 of data Port B for input or output (0=input,

1=output)

Bit 5: Select Bit 5 of data Port B for input or output (0=input,

1=output)

Bit 6: Select Bit 6 of data Port B for input or output (0=input,

1=output)

Bit 7: Select Bit 7 of data Port B for input or output (0=input,

1=output)
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Location Range: 56580-56583 ($DD04-
$DD07)

Timer A and B Low and High Bytes

These four timer registers are used to control Timers A and B. For

details on the operation of these timers, see the entry for Location

Range 56324-56327 ($DC04-$DC07).

The 64 Operating System uses the CIA #2 Timers A and B

mostly for timing RS-232 send and receive operations. Serial Bus

timing uses CIA #1 Timer B.

56580 $DD04 TI2ALO
Timer A (low byte)

56581 $DD05 TI2AHI
Timer A (high byte)

56582 $DD06 TI2BLO
Timer B (low byte)

56583 $DD07 TI2BHI
Timer B (high byte)

Location Range: 56584-56587 ($DD08-
$DD0B)

Time of Day Clock

In addition to the two general-purpose timers, the 6526 CIA chip has

a special-purpose Time of Day Clock, which keeps time in a format

that humans can understand a little more easily than microseconds.

For more information about this clock, see the entry for Location

Range 56328-56331 ($DC08-$DC0B). The 64's Operating System

does not make use of these registers.

56584 $DD08 TO2TEN
Time of Day Clock Tenths of Seconds

Bits 0-3: Time of Day tenths of second digit (BCD)

Bits 4-7: Unused

56585 $DD09 TO2SEC
Time of Day Clock Seconds

Bits 0-3: Second digit of Time of Day seconds (BCD)

Bits 4-6: First digit of Time of Day seconds (BCD)

Bit 7: Unused
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56586 $DDOA TO2MIN
Time of Day Clock Minutes

Bits 0-3: Second digit of Time of Day minutes (BCD)

Bits 4-6: First digit of Time of Day minutes (BCD)

Bit 7: Unused

56587 $DD0B TO2HRS
Time of Day Clock Hours

Bits 0-3: Second digit of Time of Day hours (BCD)

Bit 4: First digit of Time of Day hours (BCD)

Bits 5-6: Unused

Bit 7: AM/PM flag (1=PM, 0=AM)

56588 $DD0C CI2SDR
Serial Data Port

The CIA chip has an on-chip serial port, which allows you to send

or receive a byte of data one bit at a time, with the most significant

bit (Bit 7) being transferred first. For more information about its use,

see the entry for location 56332 ($DC0C). The 64's Operating Sys

tem does not use this facility.

56589 $DD0D CI2ICR
Interrupt Control Register

Bit 0: Read/ did Timer A count down to 0? (l=yes)

Write/enable or disable Timer A interrupt (1=enable,

0=disable)

Bit 1: Read/ did Timer B count down to 0? (l=yes)

Write/enable or disable Timer B interrupt (1=enable,

0=disable)

Bit 2: Read/ did Time of Day Clock reach the alarm time? (l=yes)

Write/enable or disable TOD clock alarm interrupt (1=enable,

0=disable)

Bit 3: Read/ did the serial shift register finish a byte? (l=yes)

Write/enable or disable serial shift register interrupt

(1 = enable, 0=disable)

Bit 4: Read/ was a signal sent on the FLAG line? (l=yes)

Write/enable or disable FLAG line interrupt (1=enable,

0=disable)

Bit 5: Not used

Bit 6: Not used

Bit 7: Read/ did any CIA #2 source cause an interrupt? (l=yes)

Write/set or clear bits of this register (l=bits written with

1 will be set, 0=bits written with 1 will be cleared)

This register is used to control the five interrupt sources on the 6526
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CIA chip. For details on its operation, see the entry for 56333

($DC0D). The main difference between these two chips pertaining to

this register is that on CIA #2, the FLAG line is connected to Pin B

of the User Port, and thus is available to the user who wishes to take

advantage of its ability to cause interrupts for handshaking purposes.

Location Range: 56590-56591 ($DD0E-
$DD0F

See locations 56334 and 56335 for details

56590 $DD0E CI2CRA
Control Register A

Bit 0: Start Timer A (l=start, O=stop)

Bit 1: Select Timer A output on Port B (1=Timer A output appears

on Bit 6 of Port B)

Bit 2: Port B output mode (l=toggle Bit 6, 0=pulse Bit 6 for one

cycle)

Bit 3: Timer A run mode (1= one-shot, 0=continuous)

Bit 4: Force latched value to be loaded to Timer A counter (1= force
load strobe)

Bit 5: Timer A input mode (1=count microprocessor cycles, 0 = count

signals on CNT line at pin 4 of User Port)

Bit 6: Serial port (56588, $DD0C) mode (l=output, 0=input)

Bit 7: Time of Day Clock frequency (1=50 Hz required on TOD pin,

0=60 Hz)

56591 $DD0F CI2CRB
Control Register B

Bit 0: Start Timer B (l=start, 0=stop)

Bit 1: Select Timer B output on Port B (1=Timer B output appears

on Bit 7 of Port B)

Bit 2: Port B output mode (1=toggle Bit 7, 0=pulse Bit 7 for one

cycle)

Bit 3: Timer B run mode (1= one-shot, 0=continuous)

Bit 4: Force latched value to be loaded to Timer B counter (l=force

load strobe)

Bits 5-6: Timer B input mode

00 = Timer B counts microprocessor cycles

01 = Count signals on CNT line at pin 4 of User Port

10 = Count each time that Timer A counts down to 0

11 = Count Timer A 0's when CNT pulses are also present

Bit 7: Select Time of Day write (0=writing to TOD registers sets

alarm, 1=writing to TOD registers sets clock
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Location Range: 56592-56831 <$DD10-

$DDFF)
CIA #2 Register Images

Since the CIA chip requires only enough addressing lines to handle

16 registers, none of the higher bits are decoded when addressing

the 256-byte area that has been assigned to it. The result is that every

16-byte area in this 256-byte block is a mirror of every other. For the

sake of clarity in your programs, it is advisable not to use these

addresses.

Location Range: 56832-57087 ($DE00-
$DEFF)

Reserved for I/O Expansion

This range of locations is not used directly by the 64's internal hard

ware. It is, however, accessible via pin 7 of the Expansion Port. It

can be used to control cartridges which are connected to this port.

For example, the CP/M module uses this space to control which

microprocessor is in control of the system. The Z-80 microprocessor

is turned on and off by writing to 56832 ($DE00).

Another cartridge which uses this space is Simon's BASIC. This

16K cartridge is addressed at memory locations 32768-49151 ($8000-

$BFFF), which means that it overlaps the regular BASIC ROM at

40960-49151 ($A000-$BFFF). But since it contains additions to

BASIC, it must use the BASIC ROM as well. This problem is solved

by copying the cartridge at 32768-40959 ($8000-$9FFF) to RAM, and

turning the cartridge on and off by writing to or reading from loca

tion 56832 ($DE00).

Location Range: 57088-57343 ($DF00-
$DFFF)

CIA #2 Register Images

This range of locations is not used directly by the 64's internal hard

ware, but is accessible via pin 10 of the Expansion Port. One possi

ble use for this I/O memory that Commodore has mentioned is an

inexpensive parallel disk drive (which presumably would be much

faster than the current serial model).

Alternate 53248-57343 ($D000-
$DFFF): Character Generator ROM

The character generator ROM supplies the data which is used to

form the shapes of the text and graphics characters that are dis-

198



53248-57343

played on screen. Each character requires eight bytes of shape data,

and these eight-byte sequences are arranged in the order in which

the characters appear in the screen code chart (see Appendix G). For

example, the first eight bytes of data in the ROM hold the shape in

formation for the commercial at sign (@), the next eight hold the

shape of the letter A, etc. In all, there are 4096 bytes, representing

shape data for two complete character sets of 256 characters each—

IK each for uppercase/graphics, reverse uppercase/reverse graphics,

lowercase/uppercase, and reverse lowercase/reverse uppercase.

The shape of each character is formed by an 8 by 8 matrix of

screen dots. Whether any of the 64 dots is lit up or not is determined

by the bit patterns of the character data. Each byte of the Character

ROM holds a number from 0 to 255. This number can be represent

ed by eight binary digits of 0 or 1. The leftmost bit of these eight is

known as Bit 7, while the rightmost bit is called Bit 0. Each of these

binary digits has a bit value that is two times greater than the last.

The values of a bit set to 1 in each of the bit places are:

Bit

Value

0

1

1

2

2

4

3

8

4

16

5

32

6

64

7

128

A byte whose value is 255 has every bit set to 1 (128+64 + 32+ 16+

8+4+ 2 + 1 = 255), while a byte whose value is 0 is made up of all

zero bits. Numbers in between are made up of combinations of bits

set to 1 and bits set to 0. If you think of every bit that holds a 0 as a

dot on the screen which is the color of the screen background, and

every bit that holds a 1 as a dot whose color is that of the appro

priate nybble in Color RAM, you can begin to get an idea of how

the byte values relate to the shape of the character. For example, if

you PEEK at the first eight bytes of the character ROM (the tech

nique is explained in the entry for location 1), you will see the num

bers 60, 102, 110, 110, 96, 98, 60, 0. Breaking these data bytes down

into their bit values gives us a picture that looks like the following:

00111100 0+0+ 32+ 16+ 8+ 4+0+0 = 60

01100110

01101110

01101110

01100000

01100010

00111100

00000000

If you look closely, you will recognize the shape of the commercial

at sign (@) as it's displayed on your screen. The first byte of data is

60, and you can see that Bits 5, 4, 3, and 2 are set to 1. The chart

above shows that the bit values for these bits are 32, 16, 8, and 4.
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o -

o -

o -

0 -

0 H

0 H

0 H

1- 64+

1- 64+

1- 64+

h 64+

h 64+

h 0+

h 0+

32 +

32 +

32+

32+

32+

32+

0+

0+

0+

0+

0+

0+

16+

0+

0+

8+

8 +

0 +

0+

8+

0+

4+

4+

4+

0+

0+

4+

0+

2+

2+

2+

0+

2+

0+

0+

0

0

0

0

0

0

0

= 102

= 110

= 110

= 96

= 98

= 60

= 0
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Adding these together, you get 32+16+8+4=60. This should give

you an idea of how the byte value corresponds to the patterns of lit

dots. For an even more graphic display, type in the following pro

gram, which shows the shape of any of the 512 characters in the

ROM, along with the number value of each byte of the shape.

10 DIM B%(7),T%(7): FOR 1=0 TO 7: T%(l)=2tl: NEXT

20 POKE 53281,2: PRINT CHR$(147): POKE 53281,1: PO

KE 53280,0: POKE 646,11

30 POKE 214,20: PRINT: INPUT " CHARACTER NUMBER (0

-511)H7C$

40 C=VAL(C$): GOSUB 80: FOR 1=0 TO 7

50 POKE 214,6+1:PRINT:PRINT TAB(23);B%(I);CHR$(20)

;"{3 SPACES}11

60 FOR J=7 TO 0 STEP-1: POKE 1319+(7-J)+I*40,32-12

8*((B%(I)ANDT%(J))=T%(J))

70 NEXT J,I: POKE 214,20: PRINT: PRINT TAB(27)"

{4 SPACES}11: GOTO 30
80 POKE 56333,127: POKE 1,51:FOR 1=0 TO 7

90 B%(I)=PEEK(53248+C*8+I): NEXT: POKE 1,55: POKE

{SPACE}56333,129: RETURN

If you have read about the VIC-II video chip, you know that it can

address only 16K of memory at a time, and that all display data such

as screen memory, character shape data, and sprite shape data must

be stored within that 16K block.

Since it would be very inconvenient for the VIC-II chip to be

able to access the character data only at the 16K block which in

cludes addresses 53248-57343 ($D000-$DFFF), the 64 uses an

addressing trick that makes the VIC-II chip see an image of the

Character ROM at 4096-8191 ($1000-$lFFF) and at 36864-40959

($9000-$9FFF). It is not available in the other two blocks. To gen

erate characters in these blocks, you must supply your own user-

defined character set, or copy the ROM data to RAM. A machine

language routine for doing this is included in a sample program at

the entry for 56576 ($DD00).

As indicated above, you are by no means limited to using the

character data furnished by the ROM. The availability of user-

defined characters greatly extends the graphics power of the 64. It

allows you to create special text characters, like math or chemistry

symbols and foreign language alphabets. You can also develop spe

cial graphics characters as a substitute for plotting points in bitmap

graphics. You can achieve the same resolution using a custom char

acter as in high-resolution bitmap mode, but with less memory.

Once you have defined the character, it is much faster to print it to

the screen than it would be to plot out all of the individual points.

To employ user-defined characters, you must first pick a spot to

put the shape data. This requires choosing a bank of 16K for video
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chip memory (see the entry under Bits 0-1 of 56576, $DD00 for the

considerations involved), and setting the pointer to the 2K area of

character memory in 53272 ($D018). It is then up to you to supply

the shape data for the characters. You can use part of the ROM char

acter set by reading the ROM and transferring the data to your char

acter shape area (see the entry for location 1 for a method of reading

the ROM).

Your original characters may be created by darkening squares on

an 8 by 8 grid, converting all darkened squares to their bit values,

and then adding the bit values for each of the eight bytes. Or, you

may use one of the many character graphics editor programs that are

available commercially to generate the data interactively by drawing

on the screen.

One graphics mode, multicolor text mode, almost requires that

you define your own character set in order to use it effectively. Mul

ticolor mode is enabled by Bit 4 of location 53270 ($D016). Instead

of using each bit to control whether an individual dot will be fore

ground color (1) or background color (0), that mode breaks down

each byte of shape data in four bit-pairs. These bit-pairs control

whether a dot will be the color in Background Color Register #0

(00), the color in Background Color Register #1 (01), the color in

Background Color Register #2 (10), or the color in the appropriate

nybble of Color RAM (11). Since each pair of bits controls one dot,

each character is only four dots across. To make up for this, each dot

is twice as wide as a normal high-resolution dot.
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8K Operating
System Kernal
ROM

Locations 57344 to 65535 ($E000 to $FFFF) are used by the 8K Op

erating System Kernal ROM. This ROM contains the master control

program that directs all of the computer's input and output. When

you turn the 64's power on, this program takes over and performs

the various internal tasks which are necessary to enable you to use

the computer. These include such things as clearing RAM, getting

the I/O devices and video display chip ready for use, setting various

pointers, checking for autostart cartridges, and setting up BASIC if

no such cartridges are found.

The Kernal ROM contains many useful I/O routines that you

might wish to incorporate in your own programs. However, the

Kernal ROM is subject to revision (it was revised twice in the first

six months alone), and these routines are not guaranteed to stay

in the same place. This means that if your programs make direct

jumps into the ROM, there is no telling if your program will work

with future versions of the Kernal on later Commodore models. To

help avoid these incompatability problems, Commodore provides a

jump table at the end of the ROM which points to the current loca

tion of each of a number of these routines in any given Kernal.

This jump table has been a feature of all Commodore computers

from the beginning, and has been expanded in the 64 to include 39

separate routines. The jump vectors for the original 15 routines

which have always been included in the table (such as the one to

the routine which outputs a character) are the same as on previous

Commodore computers. By having your program jump to the table

address rather than directly to the routine desired, you can guarantee

that your program will work without modification on future versions

of the 64, as well as on future Commodore models.

To the extent that your programs do not require the enhanced

graphics capabilities of the 64, they can also be made to work with

the PET and VIC-20 computers. So remember: While jumping to un

documented entry points may save time in the short run, in the long

run it may cause compatibility problems and should be avoided.
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As with the section on the BASIC ROM, this section is not

meant to be a complete explanation of the Kernal ROM, but rather a

guidepost for further exploration. Where the exact instructions the

Kernal ROM routines use are important to your programming, it will

be necessary for you to obtain a disassembly listing of those routines

and look at the code itself.

Keep in mind that there is 8K of RAM underlying the Kernal

ROM that can be used by turning off interrupts and switching out

the Kernal ROM temporarily. Even without switching out the Kernal

ROM, this RAM may be read by the VIC-II chip if it is banked to

use the top 16K of memory, and may be used for graphics data. The

Kernal and BASIC ROMs may be copied to RAM, and the RAM ver

sions modified to change existing features or add new ones.

There are some differences between the version of the Kernal

found on the first few Commodore 64s and those found on the ma

jority of newer models. Those differences are discussed in the entries

for the sections on later Kernal additions (patches) at 58541-58623

($E4AD-$E4FF) and 65371-65407 ($FF5B-$FF7F).

The most obvious change causes the Color RAM at 55296

($D800) to be initialized to the background color when the screen is

cleared on newer models, instead of white as on the original models.

Other changes allow the new Kernal software to be used by either

U.S. or European 64s. Keep in mind that the Kernal is always subject

to change, and that the following discussion, while accurate at the

time written (mid-1983), may not pertain to later models. If future

changes are like past ones, however, they are likely to be minor

ones. The first place to look for these changes would be in the patch

sections identified above.

57344 $E000
Continuation of EXP Routine

This routine is split, with part on the BASIC ROM and the other part

here. Since the two ROMs do not occupy contiguous memory as on

most Commodore machines, the BASIC ROM ends with a JMP

$E000 instruction. Thus, while the BASIC interpreter on the 64 is for

the most part the same as on the VIC, the addresses for routines in

this ROM are displaced by three bytes from their location on the

VIC.

57411 $E043 POLY1
Function Series Evaluation Subroutine 1

This routine is used to evaluate more complex expressions, and calls

the following routine to do the intermediate evaluation.
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57433 $E059 POLY2
Function Series Evaluation Subroutine 2

This is the main series evaluation routine, which evaluates expres

sions by using a table of the various values that must be operated on

in sequence to obtain the proper result.

57485 $E08D RMULC
Multiplicative Constant for RND

A five-byte floating point number which is multiplied by the seed

value as part of the process of obtaining the next value for RND.

57490 $E092 RADDC
Additive Constant for RND

The five-byte floating point number stored here is added to the seed

as part of the process of obtaining the value for RND.

57495 $E097 RND
Perform RND

This routine comes up with a random number in one of three ways,

depending on the argument X of RND(X). If the argument is posi

tive, the next RND value is obtained by multiplying the seed value

in location 139 ($8B) by one of the constants above, adding the other

constant, and scrambling the resulting bytes. This produces the next

number in a sequence. So many numbers can be produced in this

way before the sequence begins to repeat that it can be considered

random.

If the argument is negative, the argument itself is scrambled,

and made the new seed. This allows creation of a sequence that can

be duplicated.

If the argument is 0, four bytes of the Floating Point Accumula

tor are loaded from the low and high byte of Timer A, and the

tenths of second and second Time of Day Clock registers, all on CIA

#1. This provides a somewhat random value determined by the set

ting of those timers at the moment that the command is executed,

which becomes the new seed value. The RND(l) command should

then be used to generate further random numbers.

The RND(O) implementation on the 64 has serious problems

which make it unsuitable for generating a series of random numbers

when used by itself. First of all, the Time of Day Clock on CIA #1

(see 56328-56331, $DC08-$DC0B) does not start running until you

write to the tenth of second register. The Operating System never

starts this clock, and therefore the two registers used as part of the

floating point RND(O) value always have a value of 0. Even if the

clock was started, however, these registers keep time in Binary Coded

Decimal (BCD) format, which means that they do not produce a full
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range of numbers from 0 to 255. In addition, the Timer A high regis

ter output ranges only from 0 to 66, which also limits the range of

the final floating point value, so that certain numbers are never

chosen.

57593 $E0F9
Call Kernal I/O Routines

This section is used when BASIC wants to call the Kernal I/O

routines CHROUT, CHRIN, CHKOUT, CHKIN, and GETIN. It han

dles any errors that result from the call, and creates a 512-byte buff

er space at the top of BASIC and executes a CLR if the RS-232

device is opened.

57642 $E12A SYS
Perform SYS

Before executing the machine language subroutine (JSR) at the ad

dress indicated, the .A, .X, .Y, and .P registers are loaded from the

storage area at 780-783 ($30C-$30F). After the return from subrou

tine (RTS), the new values of those registers are stored back at 780-

783 ($30C-$30F).

57686 $E156 SAVE
Perform SAVE

This routine sets the range of addresses to be saved from the start of

BASIC program text and end of BASIC program text pointers at 43

($2B) and 45 ($2D), and calls the Kernal SAVE routine. This means

that any area of memory can be saved by altering these two pointers

to point to the starting and ending address of the desired area, and

then changing them back.

57701 $E165 VERIFY
Perform VERIFY

This routine sets the load/verify flag at 10 ($A), and falls through to

the LOAD routine.

57704 $E168 LOAD
Perform LOAD

This routine sets the load address to the start of BASIC (from pointer

at 43, $2B), and calls the Kernal LOAD routine. If the load is suc

cessful, it relinks the BASIC program so that the links agree with the

address to which it is loaded, and it resets the end of BASIC pointer

to reflect the new end of program text. If the LOAD was done while
a program was running, the pointers are reset so that the program

starts executing all over again from the beginning. A CLR is not per

formed, so that the variables built so far are retained, and their

208



57862

values are still accessible. The pointer to the variable area is not

changed, but if the new program is longer than the one that loaded

it, the variable table will be partially overwritten. This will cause er

rors when the overwritten variables are referenced. Likewise, strings

whose text was referenced at its location within the original program

listing will be incorrect.

Since a LOAD from a program causes the program execution to

continue at the first line, when loading a machine language routine

or data file with a nonrelocating load (for example, LOAD"FILE",8,1)

from a program, you should read a flag and GOTO the line after the

LOAD if you don't want the program to keep rerunning indefinitely:

10 IF FLAG= 1 THEN GOTO 30

20 FLAG= 1: LOAD "FILE",8,1

30 REM PROGRAM CONTINUES HERE

57790 $E1BE OPEN
Perform OPEN

The BASIC OPEN statement calls the Kernal OPEN routine.

57799 $E1C7 CLOSE
Perform CLOSE

The BASIC CLOSE statement calls the Kernal CLOSE routine.

57812 $E1D4
Set Parameters for LOAD, VERIFY, and SAVE

This routine is used in common by LOAD, SAVE, and VERIFY for

setting the filename, the logical file, device number, and secondary

address, all of which must be done prior to these operations.

57856 $E200
Skip Comma and Get Integer in .X

This subroutine is used to skip the comma between parameters and

get the following integer value in the .X register.

57862 $E206
Fetch Current Character and Check for End of Line

This subroutine gets the current character, and if it is a 0 (end of

line), it pulls its own return address off the stack and returns. This

terminates both its own execution and that of the subroutine which

called it.

209



57870

57870 $E20E
Check for Comma

This subroutine checks for a comma, moves the text pointer past it if

found, and returns an error if it is not found.

57881 $E219
Set Parameters for OPEN and CLOSE

This routine is used in common by OPEN and CLOSE for setting the

filename, the logical file, device number, and secondary address, all

of which must be done prior to these operations.

57956 $E264 COS
Perform COS

COS is executed by adding PI/2 to the contents of FAC1 and drop

ping through to SIN.

57960 $E268 SIN
Perform SIN

This routine evaluates the SIN of the number in FAC1 (which repre

sents the angle in radians), and leaves the result there.

58036 $E2B4 TAN
Perform TAN

This routine evaluates the tangent of the number in FAC1 (which

represents the angle in radians) by dividing its sine by its cosine.

Location Range: 58080-58125 ($E2E0-
$E30D)

Table of Constants for Evaluation of SIN, COS, and TAN

58080 $E2E0 PI2
The Five-Byte Floating Point Representation of the Constant PI/2

58085 $E2E5 TWOPI
The Five-Byte Floating Point Representation of the Constant 2*PI

58090 $E2EA FR4
The Five-Byte Floating Point Representation of the Constant 1/4

58095 $E2EF SINCON
Table of Constants for Evaluation of SIN, COS, and TAN

This table starts with a counter byte of 5, indicating that there are six

entries in the table. This is followed by the six floating point

constants of five bytes each.
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58126 $E30E ATN
Perform ATN

The arc tangent of the number in FAC1 (which represents the angle

in radians) is evaluated using the 12-term series of operations from

the constant table which follows. The answer is left in FAC1.

58174 $E33E ATNCON
Table of Constants for ATN Evaluation

The table begins with a count byte of 11, which is followed by 12

constants in five-byte floating point representation.

58235 $E37B
Warm Start BASIC

This is the entry point into BASIC from the BRK routine at 65126

($FE66), which is executed when the STOP and RESTORE keys are

both pressed. It first executes the Kernal CLRCHN routine which

closes all files. It then sets the default devices, resets the stack and

BASIC program pointers, and jumps through the vector at 768

($300) to the next routine to print the READY prompt and enter the

main BASIC loop.

58251 $E38B
Error Message Handler

This routine to print error messages is pointed to by the vector at

768 ($300). Using the .X register as an index, it either prints an error

message from the table at 41363 ($A193) or the READY prompt, and

continues through the vector at 770 ($302) to the main BASIC loop.

58260 $E394
Cold Start BASIC

This initialization routine is executed at the time of power-up. The

RAM vectors to important BASIC routines are set up starting at 768

($300), the interpreter is initialized, the start-up messages are print

ed, and the main loop entered through the end of the warm start

routine.

58274 $E3A2 INITAT
Text of the CHRGET Routine Which Runs at 115 ($73)

The text of the CHRGET routine is stored here, and moved to Page

0 by the BASIC initialization routine. When creating a wedge in

CHRGET, it is possible to execute all or part of this code in place of

the RAM version.
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58298 $E3BA
Initial RND Seed Value

At power-up time, this five-byte floating point constant is transferred

to 139 ($8B), where it functions as the starting RND seed number.

Thus, if RND is not initialized with a negative or zero argument, it

will always return the same sequence of numbers.

58303 $E3BF INIT
Initialize BASIC

This routine is called by the cold start routine to initialize all of the

BASIC zero-page locations which have a fixed value. This includes

copying the CHRGET routine from the ROM location above, to 115

($73).

58402 $E422
Print BASIC Start-Up Messages

This routine prints the start-up message "**** COMMODORE 64

BASIC V2 ****", calculates the amount of free memory, and prints

the BYTES FREE message.

58439 $E447
Table of Vectors to Important BASIC Routines

This table contains the vectors which point to the addresses of some

important BASIC routines. The contents of this table are moved to

the RAM table at 768 ($300).

58451 $E453
Copy BASIC Vectors to RAM

The cold start routine calls this subroutine to copy the table of

vectors to important BASIC routines to RAM, starting at location 768

($300).

58464 $E460 WORDS
Power-Up Messages

The ASCII text of the start-up messages "**** COMMODORE 64

BASIC V2 ****" and "BYTES FREE" is stored here.

Location Range: 58551-58623 ($E4B7-

$E4FF)
Patches Added to Later Kernal Versions

This area contains code that was not found in the original version of
the Kernal. These additions were made to fix some bugs and to in

crease Kernal compatibility between U.S. and European 64s.
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58541 $E4AD
Patch for BASIC Call of CHKOUT

This patch was made to preserve the .A register if there was no error

returned from BASIC'S call of the Kernal CHKOUT routine. Appar

ently, the first version could cause a malfunction of the CMD and

PRINT# commands.

58551 $E4B7
35 Unused Bytes (all have the value of 170, $AA)

Location Range: 58586-65535 ($E4DA-

$FFFF)
Kernal I/O Routines

After the conclusion of BASIC comes the part of this ROM which

can be considered the Kernal proper. This part contains all of the

vectored routines found in the jump table starting at 65409 ($FF81).

58586 $E4DA
Clear Color RAM to the Color in Background Color Register 1

This routine is a patch added to the more recent versions of the

Kernal. It is called by the routine which clears a screen line (59903,

$E9FF), and it places the color value in Background Color Register 0

(53281, $D021) into the current byte of Color RAM pointed to by
USER (243, $F3).

In the original version of the Kernal, the routine that cleared a

screen line set the corresponding Color RAM to a value of 1, which

gives text characters a white foreground color. This was changed

when the white color was found to sometimes cause light flashes

during screen scrolling. It was that white foreground color, however,

that enabled the user to POKE the screen code for a character into

screen RAM, and make that character appear on the screen in a color

that contrasted the blue background. This change to the Operating

System causes colors POKEd to screen RAM to be the same color as

the background, and thus they are invisible.

This is a fairly serious problem, because the technique of

POKEing characters to screen RAM has long been a staple of Com

modore graphics programming. Fortunately, the problem has an easy

solution. Since the Color RAM will be set to whatever color is in

Background Color Register 0, what you have to do to initialize Color

RAM to the color you desire is change the background color to the

desired foreground color, clear the screen, and then change the back

ground color back again:

C=PEEK(53281): POKE 53281,HUE: PRINT CHR$(147): POKE

53281, C
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58592 $E4E0
Pause after Finding a File on Cassette

This routine is a patch to the routine which finds a file on cassette.

After the file is found, the message FILETITLE FOUND appears on

the screen. On the original versions of the Kernal, the user would

then have to hit the Commodore key to continue the load. On the

newer versions, this patch causes a slight pause after a tape file is

found, during which time a keypress is looked for. If a key is

pressed, the loading process continues immediately. If it is not, the

load continues by itself after the end of the pause.

58604 $E4EC
Baud Rate Table for European (PAL) Standard Monitors

This table of prescaler values was added to later Kernal versions to

allow the same Kernal software to be used with either U.S. or Euro

pean 64s. It contains the values which are required to obtain inter

rupts at the proper frequency for the standard RS-232 baud rates,

and corresponds exactly in format to the table of values for the U.S.

(NTSC) monitor format at 65218 ($FEC2). Separate tables are re

quired because the prescaler values are derived from dividing the

system clock rate by the baud rate, and PAL machines operate with

a slightly slower clock frequency.

58624 $E500 IOBASE
Store Base Address of Memory-Mapped I/O Devices in .X and .Y

Registers

This is one of the documented Kernal routines for which there is a

vector in the jump table at 65523 ($FFF3).

When called, this routine sets the .X register to the low byte of

the base address of the memory-mapped I/O devices, and puts the

high byte in the .Y register. This allows a user to set up a zero-page

pointer to the device, and to load and store indirectly through that

pointer. A program which uses this method, rather than directly

accessing such devices, could be made to function without change on

future Commodore models, even though the I/O chips may be ad

dressed at different locations. This of course assumes that the CIA or

a similar chip will be used. This routine is of limited value for creat

ing software that is compatible with both the VIC-20 and the 64 be

cause of the differences in the VIA I/O chip that VIC uses.

The current version of this routine loads the .X register with a 0,

and the .Y register with 220 ($DC), thus pointing to CIA #1, which

is at 56320 ($DC00).
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58629 $E505 SCREEN
Store Number of Screen Rows and Columns in .Y and .X

This is a documented Kernal routine which is vectored in the jump

table at 65517 ($FFED), and is provided to allow for program com

patibility between computers.

When called, this subroutine returns the number of screen col

umns in the .X register, and the number of screen rows in .Y. Thus,

a program can detect the screen format of the machine on which it is

running, and make sure that text output is formatted accordingly.

The present version of this routine loads the .X register with 40

($28) and the .Y register with 25 ($19).

58634 $E50A PLOT
Read/Set Location of the Cursor

The jump table entry for this documented Kernal is at 65520

($FFF0).

The routine allows the user to read or set the position of the

cursor. If the carry flag is set with a SEC instruction before calling

this subroutine, cursor column (X position) will be returned in the .X

register, and the cursor row (Y position) will be returned in the .Y

register. If the carry flag is cleared with a CLC instruction before en

tering this routine, and the .Y and .X registers are loaded with the

desired row and column positions respectively, this routine will set

the cursor position accordingly.

The current read routine loads .X and .Y from locations 214

($D6) and 211 ($D3) respectively. The cursor set routine stores .X

and .Y in these locations, and calls the routine that sets the screen

pointers at 58732 ($E56C).

The user can access this routine from BASIC by loading the .X,

.Y, and .P register values desired to the save area starting at 780

($30C).

58648 $E518
Initialize Screen and Keyboard

This is the original CINT Kernal routine, to which additions were

made in later versions of the Kernal.

After calling the routine at 58784 ($E5A0) to set up default I/O

values, this routine initializes the cursor blink flags, the keyboard de

code vector, the key repeat delay and frequency counters, the current

color code, and maximum keyboard buffer size. It then falls through

to the next routine.

58692 $E544
Initialize the Screen Line Link Table and Clear the Screen

This routine initializes the screen line link table at 217 ($D9), clears
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the screen, and clears the Color RAM to the background color. It

falls through to the next routine.

58726 $E566
Home the Cursor

This routine sets PNTR (211, $D3) and TBLX (214, $D6) to 0, and

falls through to the next routine.

58732 $E56C
Set Pointer to Current Screen Line

This routine sets the pointer PNT (209, $D1) to the address of the

first byte of the current logical line. In figuring this address, it takes

into account the status of the screen line link table, which can indi

cate that two physical lines should be joined as one logical line.

58784 $E5A0
Set Default I/O Devices and Set Default Values for VIC-II Chip

Registers

This routine sets the keyboard and screen as the current input and

output devices. It then writes the default values found in the table at

60601 ($ECB9) to the VIC-II chip.

58804 $E5B4 LP2
Get a Character from the Keyboard Buffer

This routine transfers the first character from the keyboard buffer to

the .A register, bumps the rest of the characters one place up in line,

and decrements the pointer, showing how many characters are wait

ing in the buffer.

58826 $E5CA
Wait for a Carriage Return from the Keyboard

This subroutine is called by the portion of the CHRIN routine that

handles keyboard input. It turns the cursor on, gets characters, and

echoes them to the screen until a carriage return has been entered. It

also looks for the shifted RUN/STOP key, and forces the output of

the commands LOAD and RUN if it finds it.

58930 $E632
Input a Character from Screen or Keyboard

This routine is the portion of the Kernal CHRIN routine that handles

input from the keyboard and screen devices. CHRIN gets one byte at

a time from the current screen position, or inputs a whole line from

the keyboard and returns it one byte at a time.
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59012 $E684
Test for Quote Marks

This subroutine checks if the current character is a quotation mark,

and if it is, toggles the quote switch at 212 ($D4).

59025 $E691
Add a Character to the Screen

This is part of the routine that outputs a character to the screen. It

puts printable characters into screen memory.

59048 $E6A8
Return from Outputting a Character to the Screen

This is the common exit point for the screen portion of the CHROUT

routine.

59062 $E6B6
Advance the Cursor

This routine advances the cursor, and provides for such things as

scrolling at the end of the screen, and inserting a blank line in order

to add another physical line to the current logical line.

59137 $E701
Move Cursor Back over a 40-Column Line Boundary

59158 $E716
Output to the Screen

This is the main entry point for the part of CHROUT that handles

output to the screen device. It takes the ASCII character number,

and tests if the character is printable. If it is, it prints it (taking into

consideration the reverse flag, if any inserts are left, etc.). If it is a

nonprinting character, the routine performs the appropriate cursor

movement, color change, screen clearing, or whatever else might be

indicated.

59516 $E87C
Move Cursor to Next Line

This subroutine moves the cursor down to the next line if possible,

or scrolls the screen if the cursor is on the last line.

59537 $E891
Output a Carriage Return

A carriage return is performed by clearing insert mode, reverse vid

eo, and quote mode, and moving the cursor to the next line.
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59553 $E8A1
If at the Beginning of a Screen Line, Move Cursor to Previous

Line

59571 $E8B3
If at the End of a Screen Line, Move Cursor to the Next Line

59595 $E8CB
Check for a Color Change

This routine is used by the screen CHROUT routine to check if the

character to be printed is one that causes the current foreground

color to change (such as the CTRL-1 combination).

59601 $E8D1
PETASCII Color Code Equivalent Table

This table gives the PETASCII values of the color change characters

for each of the 16 possible colors. These values are:

144 ($90) Change to color 0 (black)

5 ($05) Change to color 1 (white)

28 ($1C) Change to color 2 (red)

159 ($9F) Change to color 3 (cyan)

156 ($9C) Change to color 4 (purple)

30 ($1E) Change to color 5 (green)

31 ($1F) Change to color 6 (blue)

158 ($9E) Change to color 7 (yellow)

129 ($81) Change to color 8 (orange)

149 ($95) Change to color 9 (brown)

150 ($96) Change to color 10 (light red)

151 ($97) Change to color 11 (dark gray)

152 ($98) Change to color 12 (medium gray)

153 ($99) Change to color 13 (light green)

154 ($9A) Change to color 14 (light blue)

155 ($9B) Change to color 15 (light gray)

59626 $E8EA
Scroll Screen

This subroutine moves all of the screen lines up, so that a blank line

is created at the bottom of the screen and the top screen line is lost.

If the top logical line is two physical lines long, all lines are moved

up two lines. Holding down the CTRL key will cause a brief pause

after the scroll.

59749 $E965
Insert a Blank Line on the Screen

This subroutine is used when INSERTing to add a blank physical

line to a logical line.
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59848 $E9C8
Move Screen Line

This subroutine is used by the scroll routine to move one screen line

(and its associated Color RAM) up a line.

59872 $E9E0
Set Temporary Color Pointer for Scrolling

This subroutine sets up a pointer in 174-175 ($AE-$AF) to the Color

RAM address that corresponds to the temporary screen line address

in 172-173 ($AC-$AD).

59888 $E9F0
Set Pointer to Screen Address of Start of Line

This subroutine puts the address of the first byte of the screen line

designated by the .X register into locations 209-210 ($D1-$D2).

59903 $E9FF
Clear Screen Line

This subroutine writes space characters to an entire line of screen

memory, and clears the corresponding line of color memory to color

in Background Color Register 0 (53281, $D021).

59923 $EA13
Set Cursor Blink Timing and Color Memory Address for Print to

Screen

This subroutine sets the cursor blink countdown and sets the pointer

to Color RAM. It then falls through to the next routine.

59932 $EA1C
Store to Screen

This routine stores the character in the .A register to the screen ad

dress pointed to by 209 ($D1), and stores the color in the .X register

to the address pointed to by 243 ($F3).

59940 $EA24
Synchronize Color RAM Pointer to Screen Line Pointer

This subroutine sets the pointer at 243 ($F3) to the address of the

beginning of the line of Color RAM which corresponds to the cur

rent line of screen RAM (whose pointer is at 209, $D1).

59953 $EA31
IRQ Interrupt Entry

This is the entry point to the standard IRQ interrupt handler. Timer

A of CIA #1 is set at power-on to cause an IRQ interrupt to occur

219



60039

every 1/60 second. When the interrupt occurs, program flow is trans

ferred here via the CINV vector at 788 ($314). This routine updates

the software clock at 160-162 ($A0-$A2), handles the cursor flash,

and maintains the tape interlock which keeps the cassette motor on

if a button is pushed and the interlock flag is on. Finally, it calls the

keyboard scan routine, which checks the keyboard and puts any

character it finds into the keyboard buffer.

60039 $EA87 SCNKEY
Read the Keyboard

This subroutine is called by the IRQ interrupt handler above to read

the keyboard device which is connected to CIA #1 (see the entry for

56320, $DC00 for details on how to read the keyboard).

It is the Kernal routine SCNKEY which can be entered from the

jump table at 65439 ($FF9F). This routine returns the keycode of the

key currently being pressed in 203 ($CB), sets the shift/control flag

if appropriate, and jumps through the vector at 655 ($28F) to the

routine that sets up the proper table to translate the keycode to

PETASCII. It concludes with the next routine, which places the

PETASCII value of the character in the keyboard buffer.

60128 $EAE0
Decode the Keystroke and Place Its ASCII Value in the Keyboard

Buffer

This is the continuation of the IRQ keyscan routine. It decodes the

keycode with the proper PETASCII table, and compares it with the

last keystroke. If it is the same, it checks to see if it is okay to repeat

the character without waiting for the key to be let up. If the charac

ter should be printed, it is moved to the end of the keyboard buffer

at 631 ($277).

60232 $EB48
Set Up the Proper Keyboard Decode Table

This routine is pointed to by the vector at 655 ($28F). Its function is

to read the shift/control flag at 653 ($28D), and set the value of the

decode table pointer at 245 ($F5) accordingly.

First it checks if the SHIFT/Commodore logo combination was

pressed, and if the toggle enable at 657 ($291) will allow a change,

the character set will be changed to lowercase/uppercase or upper

case/graphics by changing the VIC Memory Control Register at

53272 ($D018), and no character will be printed.

Next it sets the decode table pointer. There are 64 keys, and

each can have four different PETASCII values, depending on wheth

er the key is pressed by itself, or in combination with the SHIFT,

CTRL, or Commodore logo keys. Therefore, there are four tables of
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64 entries each to translate the keycode to PETASCII: the standard

table, the SHIFT table, the Commodore logo table, and the CON

TROL table. The routine will set up the pointer for the appropriate

table, depending on whether the SHIFT, CTRL, or logo key was

pressed. The CTRL key takes precedence, so that if another of these

keys is pressed along with the CTRL key, the CONTROL table is

used.

60281 $EB79
Keyboard Decode Table Vectors

This table contains the two-byte addresses of the four keyboard de

code tables in low-byte, high-byte format.

60289 $EB81
Standard Keyboard Matrix Decode Table

This table contains the 64 PETASCII values for the standard key

board, one for each key which is struck by itself. The table is in

keycode order (see the keycode table in Appendix H for the corre

spondence of keycode to key). A 65th byte with the value of 255

($FF) marks the end of the table (this corresponds to a keypress

value of 64, no key pressed).

60354 $EBC2
SHIFTed Keyboard Matrix Decode Table

This table contains the 64 PETASCII values for the shifted keyboard,

one for each key which is struck while the SHIFT key is pressed.

The table is in keycode order (see the keycode table in Appendix H

for the correspondence of keycode to key). A 65th byte with the

value of 255 ($FF) marks the end of the table (this corresponds to a

keypress value of 64, no key pressed).

60419 $EC03
Commodore Logo Keyboard Matrix Decode Table

This table contains the 64 PETASCII values for the logo keyboard,

one for each key which is struck while the Commodore logo key is

pressed. The table is in keycode order (see the keycode table in Ap

pendix H for the correspondence of keycode to key). A 65th byte

with the value of 255 ($FF) marks the end of the table (this corre

sponds to a keypress value of 64, no key pressed).

60484 $EC44
Set Lowercase/Uppercase or Uppercase/Graphics Character Set

The part of the Kernal CHROUT routine that outputs to the screen

uses this subroutine to check for the special nonprinting characters

that switch the character set (CHR$(14) and CHR$(142)). If one of
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these is the character to be printed, this routine makes the switch by

setting location 53272 ($D018) accordingly.

60510 $EC5E
Set Flag to Enable or Disable Switching Character Sets

This subroutine is also used to check for special characters to print.

In this case, it checks for the characters that enable or disable the

SHIFT/logo combination from toggling the character set currently in

use (CHR$(8) and CHR$(9)). If one of these is to be printed, the flag

at 657 ($291) is changed.

60536 $EC78
Control Keyboard Matrix Decode Table

This table contains the 64 PETASCII values for the Control key

board, one for each key which is struck while the CTRL key is

pressed. The table is in keycode order (see the keycode table in Ap

pendix H for the correspondence of keycode to key). A 65th byte

with the value of 255 ($FF) marks the end of the table (this corre

sponds to a keypress value of 64, no key pressed).

The only keys generally struck in combination with the CTRL

key are the ones that change the colors on the top row of the key

board, but this doesn't necessarily mean that the other CTRL key

combinations don't dp anything. On the contrary, looking at the values

in this table, you can see that any of the first 32 values in the

PETASCII table can be produced by some combination of the CTRL

key and another key. CTRL-@ produces CHR$(0). CTRL-A through

CTRL-Z produce CHR$(1) through CHR$(26). CTRL-: is the same as

CHR$(27), CTRL-Lira (that's the slashed-L British pound sign) pro

duces CHR$(28), CTRL-; equals CHR$(29), CTRL-up arrow produces

CHR$(30), and CTRL-= produces CHR$(31).
Any of these combinations produce the same effect as the

CHR$(X) statement. For example, CTRL-; moves the cursor over to

the right, CTRL-N switches to lowercase, CTRL-R turns on reverse

video, and CTRL-E changes the printing to white.

60601 $ECB9
Video Chip Register Default Table

This table contains the default values that are stored in the 47 VIC-II

chip registers. It is interesting to note that this table appears to be in

complete. While Sprite Color Registers 0-6 are initialized to values of

1-7, Sprite Color Register 7 is initialized to 76—the ASCII value of

the letter L which begins on the next table.

60647 $ECE7
Text for Keyboard Buffer When SHIFT/RUN Is Pressed

When the SHIFT and RUN keys are pressed, the ASCII text stored
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here is forced into the keyboard buffer. That text is LOAD, carriage

return, RUN, carriage return.

60656 $ECF0
Low Byte Table of Screen Line Addresses

This table holds the low byte of the screen address for lines 0-24.

The high byte is derived from combining a value from the screen

line link table at 217 ($D9) with the pointer to screen memory at 648

($288).

60681 $ED09 TALK
Send TALK to a Device on the Serial Bus

This is a documented Kernal routine whose entry in the jump table

is 65460 ($FFB4). When called, it ORs the device number in the Ac

cumulator with the TALK code (64, $40) and sends it on the serial

bus. This commands the device to TALK.

60684 $ED0C LISTEN
Send LISTEN to a Device on the Serial Bus

This is a documented Kernal routine whose entry in the jump table

is 65457 ($FFB1). When called, it ORs the device number in the Ac

cumulator with the LISTEN code (32, $20) and sends it on the serial

bus. This commands the device to LISTEN.

60689 $ED11
Send Command Code to a Device on the Serial Bus

This subroutine is used in common by many Kernal routines to send

the command code in the Accumulator to a device on the serial bus.

60736 $ED40
Send a Byte on the Serial Bus

This subroutine is used in common by several Kernal routines to

send the byte in the serial bus character buffer at 149 ($95) on the

serial bus.

60848 $EDB0
Time-Out Error on Serial Bus

This subroutine handles the case when the device does not respond

by setting the DEVICE NOT PRESENT error code and exiting.

60857 $EDB9 SECOND
Send a Secondary Address to a Device on the Serial Bus after

LISTEN

This is a documented Kernal routine that can be entered from the

jump table at 65427 ($FF93). It sends a secondary address from the
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Accumulator to the device on the serial bus that has just been com

manded to LISTEN. This is usually done to give the device more

particular instructions on how the I/O is to be carried out before in

formation is sent.

60871 $EDC7 TKSA
Send a Secondary Address to a Device on the Serial Bus after

TALK

This is a documented Kernal routine that can be entered from the

jump table at 65430 ($FF96). It sends a secondary address from the

Accumulator to the device on the serial bus that has just been com

manded to TALK. This is usually done to give the device more par

ticular instructions on how the I/O is to be carried out before infor

mation is sent.

60893 $EDDD CIOUT
Send a Byte to an I/O Device over the Serial Bus

This is a documented Kernal routine which can be entered from the

jump table at 65448 ($FFA8). Its purpose is to send a byte of data

over the serial bus. In order for the data to be received, the serial de

vice must have first been commanded to LISTEN and been given a

secondary address if necessary. This routine always buffers the cur

rent character, and defers sending it until the next byte is buffered.

When the UNLISTEN command is sent, the last byte will be sent

with an End or Identify (EOI).

60911 $EDEF UNTLK
Send UNTALK to a Device on the Serial Bus

This is a documented Kernal routine whose entry in the jump table

is 65451 ($FFAB). When called, it sends the UNTALK code (95, $5F)

on the serial bus. This commands any TALKer on the bus to stop

sending data.

60926 $EDFE UNLSN
Send UNLISTEN to a Device on the Serial Bus

This is a documented Kernal routine whose entry in the jump table

is 65454 ($FFAE). It sends the UNLISTEN code (63, $3F) on the

serial bus. This commands any LISTENers to get off the serial bus,

and frees up the bus for other users.

60947 $EE13 ACPTR
Receive a Byte of Data from a Device on the Serial Bus

This is a documented Kernal routine whose entry point in the jump

table is 65445 ($FFA5). When called, it will get a byte of data from

the current TALKer on the serial bus and store it in the Accumulator.
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In order to receive the data, the device must have previously been

sent a command to TALK and a secondary address if it needs one.

61061 $EE85
Set the Serial Clock Line Low (Active)

This subroutine clears the serial bus clock pulse output bit (Bit 4 of

CIA #2 Data Port A at 56576, $DD00).

61070 $EE8E
Set the Serial Clock Line High (Inactive)

This subroutine sets the serial bus clock pulse output bit to 1 (Bit 4

of CIA #2 Data Port A at 56576, $DD00).

61079 $EE97
Set Serial Bus Data Output Line Low

This subroutine clears the serial bus data output bit to 0 (Bit 5 of

CIA #2 Data Port A at 56576, $DD00).

61088 $EEA0
Set Serial Bus Data Output Line High

This subroutine sets the serial bus data output bit to 1 (Bit 5 of CIA

#2 Data Port A at 56576, $DD00).

61097 $EEA9
Get Serial Bus Data Input Bit and Clock Pulse Input Bit

This subroutine reads the serial bus data input bit and clock pulse

input bit (Bits 7 and 6 of CIA #2 Data Port A at 56576, $DD00), and

returns the data bit in the Carry flag and the clock bit in the Neg

ative flag.

61107 $EEB3
Perform a One-Millisecond Delay

61115 $EEBB
Send Next RS-232 Bit (NMI)

This subroutine is called by the NMI interrupt handler routine to

send the next bit of data to the RS-232 device.

61230 $EF2E
Handle RS-232 Errors

This subroutine sets the appropriate error bits in the status register at

663 ($297).
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61258 $EF4A
Set the Word Length For the Current RS-232 Character

This routine takes the number of data bits to send per RS-232 char

acter from the control register and puts it into the .X register for use

by the RS-232 routines.

61273 $EF59
Receive Next RS-232 Bit (NMI)

This routine is called by the NMI interrupt handler routine to receive

the next bit of data from the RS-232 device.

61310 $EF7E
Setup to Receive a New Byte from RS-232

61328 $EF90
Test If Start Bit Received from RS-232

61335 #EF97
Put a Byte of Received Data into RS-232 Receive Buffer

This routine checks for a Receive Buffer Overrun, stores the byte just

received in the RS-232 receive buffer, and checks for Parity Error,

Framing Error, or Break Detected Error. It then sets up to receive the

next byte.

61409 #EFE1
CHKOUT for the RS-232 Device

The Kernal CHKOUT routine calls this subroutine to define the RS-

232 device's logical file as an output channel. Before this can be

done, the logical file must first be OPENed.

61460 $F014
CHROUT for the RS-232 Device

The Kernal CHROUT routine calls this subroutine to output a char

acter to the RS-232 device. After the logical file has been OPENed

and set for output using CHKOUT, the CHROUT routine is used to

actually send a byte of data.

61517 $F04D
CHKIN for the RS-232 Device

The Kernal CHKIN routine calls this subroutine to define the RS-232

device's logical file as an input channel. A prerequisite for this is that

the logical file first be OPENed.
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61574 $F086
GETIN for the RS-232 Device

The Kernal GETIN routine calls this subroutine to remove the next

byte of data from the RS-232 receive buffer and return it in the Ac

cumulator. The routine checks for the Receive Buffer Empty Error. It

is also called by the Kernal CHRIN routine, which essentially does

the same thing as GETIN for the RS-232 device.

61604 $F0A4
Stop CIA #2 RS-232 NMIs for Serial/Cassette Routines

This subroutine turns off the NMIs that drive the RS-232 routines

before any I/O is done using the serial bus or cassette device. Such

interrupts could throw off the timing of those I/O routines, and in

terfere with the transmission of data.

61629 $F0BD
Kernal Control Messages

The ASCII text of the Kernal I/O control messages is stored here.

The last byte of every message has Bit 7 set to 1 (ASCII value+128).

The messages are:

I/O ERROR

SEARCHING

FOR

PRESS PLAY ON TAPE

PRESS RECORD & PLAY ON TAPE

LOADING

SAVING

VERIFYING

FOUND

OK

61739 $F12B
Print Kernal Error Message If in Direct Mode

This routine first checks location 157 ($9D) to see if the messages are

enabled. If they are, it prints the message indexed by the .Y register.

61758 $F13E GETIN
Get One Byte from the Input Device

This is a documented Kernal routine whose jump table entry point is

at 65508 ($FFE4). The routine jumps through a RAM vector at 810

($32A). Its function is to get a character from the current input de

vice (whose device number is stored at 153, $99). In practice, it oper

ates identically to the CHRIN routine below for all devices except for

the keyboard. If the keyboard is the current input device, this routine
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gets one character from the keyboard buffer at 631 ($277). It de

pends on the IRQ interrupt routine to read the keyboard and put

characters into the buffer.

61783 $F157 CHRIN
Input a Character from the Current Device

This is a documented Kernal routine whose jump table entry point is

at 65487 ($FFCF).

The routine jumps through a RAM vector at 804 ($324). Its

function is to get a character from the current input device (whose

device number is stored at 153, $99). This device must first have

been OPENed and then designated as the input channel by the

CHKIN routine.

When this routine is called, the next byte of data available from

this device is returned in the Accumulator. The only exception is the

routine for the keyboard device (which is the default input device). If

the keyboard is the current input device, this routine blinks the

cursor, fetches characters from the keyboard buffer, and echoes them

to the screen until a carriage return is encountered. When a carriage

return is found, the routine sets a flag to indicate the length of the

last logical line before the return character, and reads the first char

acter of this logical line from the screen.

Subsequent calls to this routine will cause the next character in

the line to be read from the screen and returned in the Accumulator,

until the carriage return character is returned to indicate the end of

the line. Any call after this character is received will start the whole

process over again.

Note that only the last logical line before the carriage return is

used. Any time you type in more than 80 characters, a new logical

line is started. This routine will ignore any characters on the old log

ical line, and process only the most recent 80-character group.

61898 $F1CA CHROUT
Output a Byte

This is a documented Kernal routine whose jump table entry point is

at 65490 ($FFD2). The routine jumps through a RAM vector at 806

($326). It is probably one of the best known and most used Kernal

routines, because it sends the character in the Accumulator to the

current output device. Unless a device has been OPENed and desig

nated as the current output channel using the CHKOUT routine, the

character is printed to the screen, which is the default output device.

If the cassette is the current device, outputting a byte will only add it

to the buffer. No actual transmission of data will occur until the 192-

byte buffer is full.

228



62097

61966 $F20E CHKIN
Designate a Logical File As the Current Input Channel

This is a documented Kernal routine which can be entered from the

jump table at 65478 ($FFC6).

The routine jumps through a RAM vector at 798 ($3IE). If you

wish to get data from any device other than the keyboard, this rou

tine must be called after OPENing the device, before you can get a

data byte with the CHRIN or GETIN routine. When called, the rou

tine will designate the logical file whose file number is in the .X reg

ister as the current file, its device as the current device, and its sec

ondary address as the current secondary address. If the device on the

channel is a serial device, which requires a TALK command and

sometimes a secondary address, this routine will send them over the

serial bus.

62032 $F250 CHKOUT
Designate a Logical File As the Current Output Channel

This is a documented Kernal routine which can be entered from the

jump table at 65481 ($FFC9).

The routine jumps through a RAM vector at 800 ($320). If you

wish to output data to any device other than the screen, this routine

must be called after OPENing the device, and before you output a

data byte with the CHROUT routine. When called, the routine will

designate the logical file whose file number is in the .X register as

the current file, its device as the current device, and its secondary

address as the current secondary address. If the device on the chan

nel uses the serial bus, and therefore requires a LISTEN command

and possibly a secondary address, this information will be sent on

the bus.

62097 $F291 CLOSE
Close a Logical I/O File

CLOSE is a documented Kernal routine which can be entered via the

jump table at 65475 ($FFC3).

The routine jumps through a RAM vector at 796 ($31C). It is

used to close a logical file after all I/O operations involving that file

have been completed. This is accomplished by loading the Accumu

lator with the logical file number of the file to be closed, and calling

this routine.

Closing an RS-232 file will de-allocate space at the top of mem

ory for the receiving and transmit buffers. Closing a cassette file that

was opened for writing will force the last block to be written to cas

sette, even if it is not a full 192 bytes. Closing a serial bus device

will send an UNLISTEN command on the bus. Remember, it is
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necessary to properly CLOSE a cassette or disk data file in order to

retrieve the file later.

For all types of files, CLOSE removes the file's entry from the

tables of logical files, device, and secondary address at 601, 611, and

621 ($259, $263, $26D), and moves all higher entries in the table
down one space.

62223 $F30F
Find the File in the Logical File Table

This subroutine is used by many Kernal routines to find the position

of the logical file in the logical file table at 601 ($259).

62239 $F31F
Set Current Logical File, Current Device, and Current Secondary

Address

This subroutine is used to update the Kernal variables at 184-186

($B8-$BA) which hold the current logical file number, current device

number, and current secondary address number.

62255 $F32F CLALL
Close All Logical I/O Files

CLALL is a documented Kernal routine whose entry point in the

jump table is 65511 ($FFE7).

The routine jumps through a RAM vector at 812 ($32C). It

closes all open files, by resetting the index into open files at 152

($98) to zero. It then falls through to the next routine, which restores

the default I/O devices.

62259 $F333 CLRCHN
Restore Current Input and Output Devices to the Default Devices

This is a documented Kernal Routine which can be entered at loca

tion 65484 ($FFCC) in the jump table.

The routine jumps through a RAM vector at 802 ($322). It sets

the current input device to the keyboard, and the current output de

vice to the screen. Also, if the current input device was formerly a

serial device, the routine sends it an UNTALK command on the

serial bus, and if a serial device was formerly the current output

device, the routine sends it an UNLISTEN command.

62282 $F34A OPEN
Open a Logical I/O File

OPEN is a documented Kernal I/O routine. It can be entered from

the jump table at 65472 ($FFC0).

The routine jumps through a RAM vector at 794 ($31A). This

routine assigns a logical file to a device, so that it can be used for
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Input/Output operations. In order to specify the logical file number,

the device number, and the secondary address if any, the SETLFS

routine must first be called. Likewise, in order to designate the

filename, the SETNAM routine must be used first. After these two

routines are called, OPEN is then called.

62622 $F49E LOAD
Load RAM from a Device

This is a documented Kernal routine, whose entry in the jump table

appears at 65493 ($FFD5).

The routine jumps through a RAM vector at 816 ($330). LOAD

is used to transfer data from a device directly to RAM. It can also be

used to verify RAM, comparing its contents to those of a disk or tape

file. To choose between these operations you must set the Accumu

lator with a 0 for a LOAD, or a 1 for a VERIFY.

Since the LOAD routine performs an OPEN, it must be preced

ed by a call to the SETFLS routine to specify the logical file number,

device number, and secondary address, and a call to the SETNAM

routine to specify the filename (a LOAD from tape can be performed

without a filename being specified). Then the .X and .Y registers

should be set with the starting address for the load, and the LOAD

routine called. If the secondary address specified was a 1, this start

ing address will be ignored, and the header information will be used

to supply the load address. If the secondary address was a 0, the ad

dress supplied by the call will be used. In either case, upon return

from the routine, the .X and .Y registers will contain the address of

the highest RAM location that was loaded.

62885 $F5A5
Print SEARCHING Message If in Direct Mode

62930 $F5D2
Print LOADING or VERIFYING

62941 $F5DD SAVE
Save RAM to a Device

This is a documented Kernal routine, whose entry in the jump table

appears at 65496 ($FFD8).

The routine jumps through a RAM vector at 818 ($332). SAVE

is used to transfer data directly from RAM to an I/O device. Since

the SAVE routine performs an OPEN, it must be preceded by a call

to the SETLFS routine to specify the logical file number, device

number, and secondary address, and a call to the SETNAM routine

to specify the filename (although a SAVE to the cassette can be per

formed without giving a filename). A Page 0 pointer to the starting
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address of the area to be saved should be set up, with the low byte

of the address first. The accumulator should be loaded with the Page

0 offset of that pointer, then the .X and .Y registers should be set

with the ending address for the save, and the SAVE routine called.

63119 $F68F
If in Direct Mode, Print SAVING and Filename

63131 $F69B UDTIM
Update the Software Clock and Check for the STOP Key

UDTIM is a documented Kernal routine which can be entered

through the jump table at 65514 ($FFEA).

It is normally called by the IRQ interrupt handler once every

sixtieth of a second. It adds one to the value in the three-byte soft

ware jiffy clock at 160-162 ($A0-$A2), and sets the clock back to

zero when it reaches the 24-hour point. In addition, it scans the key

board row in which the STOP key is located, and stores the current

value of that key in location 145 ($91). This variable is used by the

STOP routine which checks for the STOP key.

63197 $F6DD RDTIM
Read the Time From the Software Clock into the .A, .X, and .Y

Registers

This is a documented Kernal routine whose entry point in the jump

table is 65502 ($FFDE).

It reads the software clock (which counts sixtieths of a second)

into the internal registers. The .Y register contains the most signifi

cant byte (from location 160, $A0), the .X register contains the mid

dle byte (from location 161, $A1), and the Accumulator contains the

least significant byte (from location 162, $A2).

63204 $F6E4 SETTIM
Set the Software Clock from the .A, .X, and .Y Registers

This documented Kernal routine can be entered from location 65499

($FFDB).

It performs the reverse operation from UDTIM, storing the value

in the .Y register into location 160 ($A0), the .X register into 161

($A1), and the Accumulator into 162 ($A2). Interrupts are first dis

abled, to make sure that the clock will not be updated while being

set.

63213 $F6ED STOP
Test STOP Key

STOP is a documented Kernal routine which can be entered from

the jump table at location 65505 ($FFE1).
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It is vectored through RAM at 808 ($328). The routine checks to

see if the STOP key was pressed during the last UDTIM call. If it

was, the Zero flag is set to 1, the CLRCHN routine is called to set

the input and output devices back to the keyboard and screen, and

the keyboard queue is emptied.

63227 $F6FB
Set Kernal I/O Error Message

This subroutine is used to handle I/O errors from Kernal I/O

routines. It calls CLRCHN to restore default I/O devices. If Bit 6 of

the flag at 157 ($9D) is set, it prints I/O ERROR followed by the

error number, and then sets the Carry flag to indicate an error, with

the error number in the Accumulator. The Kernal error messages are

not used by BASIC, but may be used by machine language monitors

and other applications.

63276 $F72C
Get Next Tape File Header from Cassette

This routine reads in tape blocks until it finds a file header block. It

then prints the FOUND message along with the first 16 characters of

the filename.

63338 $F76A
Write Tape File Header Block

63440 $F7D0
Put Pointer to Tape Buffer in .X and .Y Registers

63447 $F7D7
Set I/O Area Start and End Pointers to Tape Buffer Start and End

Address

63466 $F7EA
Search Tape for a Filename

63511 $F817
Test Cassette Buttons and Handle Messages for Tape Read

This routine tests the sense switch, and if no buttons are depressed it

prints the PRESS PLAY ON TAPE message, and loops until a cas

sette button is pressed, or until the STOP key is pressed. If a button

is pressed, it prints the message OK.

Since the message printing routine is entered after the test for

direct mode, these messages cannot be suppressed by changing the

flag at 157 ($9D). You could have them harmlessly printed to ROM,

however, by changing the value of HIBASE at 648 ($288) tempo

rarily to 160, and then back to 4.
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63534 $F82E
Check Cassette Switch

This subroutine is used to check if a button on the recorder has been

pressed.

63544 $F838
Test Cassette Buttons and Handle Messages for Tape Write

This routine tests the sense switch, and if no buttons are depressed it

prints the PRESS PLAY & RECORD message, and loops until a cas

sette button is pressed, or until the STOP key is pressed. If a button

is pressed, it prints the message OK. These messages cannot be sup

pressed by changing the flag at 157 ($9D). See the entry for 63511

($F817) for more information.

63553 $F841
Start Reading a Block of Data from the Cassette

This subroutine tests the cassette switch and initializes various flags

for reading a block of data from cassette.

63588 $F864
Start Writing a Block of Data to the Cassette

This subroutine tests the cassette switch and initializes various flags

for writing a block of data to cassette.

63605 $F875
Common Code for Reading a Data Block from Tape and Writing

a Block to Tape

This routine sets the actual reading or writing of a block of data. It

sets CIA #1 Timer B to call the IRQ which drives the actual reading

or writing routine, saves the old IRQ vector, and sets the new IRQ

vector to the read or write routine. It also blanks the screen so that

the video chip's memory addressing (which normally takes away

some of the 6510 microprocessor's addressing time) will not interfere

with the timing of the routines.

63696 $F8D0
Test the STOP Key during Cassette I/O Operations

This subroutine is used to test the STOP key during tape I/O opera

tions, and to stop I/O if it is pressed.

63714 $F8E2
Adjust CIA #1 Timer A for Tape Bit Timing
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63788 $F92C
Read Tape Data (IRQ)

This is the IRQ handler routine that is used for reading data from

the cassette. At the end of the read, the IRQ vector is restored to the

normal IRQ routine.

64096 $FA60
Receive and Store the Next Character from Cassette

This is the part of the cassette read IRQ routine that actually gets the

next byte of data from the cassette.

64398 $FB8E
Move the Tape SAVE/LOAD Address into the Pointer at 172

($AC)

64407 $FB97
Reset Counters for Reading or Writing a New Byte of Cassette

Data

64422 $FBA6
Toggle the Tape Data Output Line

This routine sets CIA #1 Timer B, and toggles the Tape Data Output

line on the 6510 on-chip I/O port (Bit 3 of location 1).

64456 $FBC8
Write Data to Cassette—Part 2 (IRQ)

This IRQ handler routine is one part of the write data to cassette

routine.

64618 $FC6A
Write Data to Cassette—Part 1 (IRQ)

This IRQ handler routine is the other part of the write data to cas

sette routine.

64659 $FC93
Restores the Default IRQ Routine

At the end of tape I/O operations, this subroutine is used to turn the

screen back on and stop the cassette motor. It then resets CIA #1

Timer A to generate an interrupt every sixtieth of a second, and re

stores the IRQ vector to point to the normal interrupt routine that

updates the software clock and scans the keyboard.
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64696 $FCB8
Terminate Cassette I/O

This routine calls the subroutine above and returns from the inter

rupt.

64714 $FCCA
Turn off the Tape Motor

64721 $FCD1
Check the Tape Read/Write Pointer

This routine compares the current tape read/write address with the

ending read/write address.

64731 $FCDB
Advance the Tape Read/Write Pointer

This routine is used to move the pointer to the current read/write

address up a byte.

64738 $FCE2
Power-On Reset Routine

This is the RESET routine which is pointed to by the 6510 hardware

RESET vector at 65532 ($FFFC).

This routine is automatically executed when the computer is first

turned on. First, it sets the Interrupt disable flag, sets the stack point

er, and clears the Decimal mode flag. Next it tests for an autostart

cartridge. If one is found, the routine immediately jumps through the

cartridge cold start vector at 32768 ($8000). If no cartridge is found,

the Kernal initialization routines IOINIT, RAMTAS, RESTOR, and

CINT are called, the Interrupt disable flag is cleared, and the BASIC

program is entered through the cold start vector at 40960 ($A000).

64770 $FD02
Check for Autostart Cartridge

This routine tests for an autostart cartridge by comparing the charac

ters at locations 32772-6 ($8004-8) to the text below. The Zero flag

will be set if they match, and cleared if they don't.

64784 $FD10
Text for Autostart Cartridge Check

The characters stored here must be the fifth through ninth characters

in the cartridge in order for it to be started on power-up. These char

acters are the PETASCII values for CBM, each with the high bit set

( + 128), and the characters "80".
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64789 $FD15 RESTOR
Restore RAM Vectors for Default I/O Routines

This documented Kernal routine can be entered through the jump

table at 65418 ($FF8A).

It sets the values for the 16 RAM vectors to the interrupt and

important Kernal I/O routines in the table that starts at 788 ($314)

to the standard values held in the ROM table at 64816 ($FD30)

below.

64794 $FD1A VECTOR
Set the RAM Vector Table from the Table Pointed to by .X and .Y

This documented Kernal routine can be entered through the jump

table at 65421 ($FF8D).

It is used to read or change the values for the 16 RAM vectors

to the interrupt and important Kernal I/O routines in the table that

starts at 788 ($314). If the Carry flag is set when the routine is

called, the current value of the 16 vectors will be stored at a table

whose address is pointed to by the values in the .X and .Y registers.

If the Carry flag is cleared, the RAM vectors will be loaded from the

table whose address is pointed to by the .X and .Y registers. Since

this routine can change the vectors for the IRQ and NMI interrupts,

you might expect that the Interrupt disable flag would be set at its

beginning. Such is not the case, however, and therefore it would be

wise to execute an SEI before calling it and a CLI afterwards (as the

power-on RESET routine does) just to be safe.

64816 $FD30
Table of RAM Vectors to the Default I/O Routines

This table contains the 16 RAM I/O vectors that are moved to 788-

819 ($314- $333).

64848 $FD50 RAMTAS
Perform RAM Test and Set Pointers to the Top and Bottom of

RAM

This documented Kernal routine, which can be entered through loca

tion 65415 ($FF87) of the jump table, performs a number of initial
ization tasks.

First, it clears Pages 0, 2, and 3 of memory to zeros. Next, it sets

the tape buffer pointer to address 828 ($33C), and performs a nonde
structive test of RAM from 1024 ($400) up. When it reaches a non-

RAM address (presumably the BASIC ROM at 40960, $A000), that

address is placed in the top of memory pointer at 643-4 ($283-4).

The bottom of memory pointer at 641-2 ($281-2) is set to point to

address 2048 ($800), which is the beginning of BASIC program text.
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Finally, the pointer to screen memory at 648 ($288) is set to 4, which

lets the Operating System know that screen memory starts at 1024
($400).

64923 $FD9B
Table of IRQ Vectors

This table holds the vectors to the four IRQ routines which the sys

tem uses. The first points to Part 1 of the cassette write routine at

64618 ($FC6A), the second to Part 2 of the cassette write routine at
64461 ($FBCD), the third to the standard scan-keyboard IRQ at

59953 ($EA31), and the last to the cassette read routine at 63788
($F92C).

64931 $FDA3 IOINIT
Initialize CIA I/O Devices

This documented Kernal routine, which can be entered through the

jump table at 65412 ($FF84), initializes the Complex Interface Adapt

er (CIA) devices, and turns the volume of the SID chip off. As part

of this initialization, it sets CIA #1 Timer A to cause an IRQ inter

rupt every sixtieth of a second.

65017 $FDF9 SETNAM
Set Filename Parameters

This is a documented Kernal routine, which can be entered through

the jump table at location 65469 ($FFBD).

It puts the value in the Accumulator into the location which

stores the number of characters in the filename, and sets the pointer

to the address of the ASCII text of the filename from the .X and .Y

registers. This sets up the filename for the OPEN, LOAD, or SAVE

routine.

65024 $FE00 SETLFS
Set Logical File Number, Device Number, and Secondary Address

This is a documented Kernal routine, which can be entered through

the jump table at location 65466 ($FFBA).

It stores the value in the Accumulator in the location which

holds the current logical file number, the value in the .X register is

put in the location that holds the current device number, and the

value in the .Y register is stored in the location that holds the current

secondary address. If no secondary address is used, the .Y register

should be set to 255 ($FF). It is necessary to set the values of the

current file number, device number, and secondary address before

you OPEN a file, or LOAD or SAVE.
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65031 $FE07 READST
Read the I/O Status Word

This is a documented Kernal routine, which can be entered through

the jump table at location 65463 ($FFB7).

Whenever an I/O error occurs, a bit of the Status Word is set to

indicate what the problem was. This routine allows you to read the

status word (it is returned in the Accumulator). If the device was the

RS-232, its status register is read and cleared to zero. For the mean

ings of the various status codes, see the entry for location 144 ($90)

or 663 ($297) for the RS-232 device.

65048 $FE18 SETMSG
Set the Message Control Flag

This documented Kernal routine can be entered through its jump

table vector at 65424 ($FF90).

The routine controls the printing of error messages and control

messages by the Kernal. If Bit 6 is set to 1 (bit value of 64), Kernal

control messages can be printed. These messages include SEARCH

ING FOR, LOADING, and the like. If Bit 6 is cleared to 0, these

messages will not be printed (BASIC will clear this bit when a pro

gram is running so that the messages do not appear when I/O is

performed from a program). Setting Bit 6 will not suppress the

PRESS PLAY ON TAPE or PRESS PLAY & RECORD messages,

however.

If Bit 7 is set to 1 (bit value of 128), Kernal error messages can

be printed. If Bit 7 is set to 0, those error messages (for example, I/O

ERROR #nn) will be suppressed. Note that BASIC has its own set of

error messages (such as FILE NOT FOUND ERROR) which it uses in

preference to the Kernal's message.

65057 $FE21 SETTMO
Set Time-Out Flag for IEEE Bus

This documented Kernal routine can be entered from the jump table

at 65442 ($FFA2).

The routine sets the time-out flag for the IEEE bus. When time

outs are enabled, the Commodore 64 will wait for a device for 64

milliseconds, and if it does not receive a response to its signal it will

issue a time-out error. Loading the Accumulator with a value less

than 128 and calling this routine will enable time-outs, while using a

value over 128 will disable time-outs.

This routine is for use only with the Commodore IEEE add-on

card, which at the time of this writing was not yet available.
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65061 $FE25 MEMTOP
Read/Set Top of RAM Pointer

This is a documented Kernal routine, which can be entered through

the jump table at location 65433 ($FF99).

It can be used to either read or set the top of RAM pointer. If

called with the Carry flag set, the address in the pointer will be load

ed into the .X and .Y registers. If called with the Carry flag cleared,

the pointer will be changed to the address found in the .X and .Y

registers.

65076 $FE34 MEMBOT
Read/Set Bottom of RAM Pointer

This is a documented Kernal routine, which can be entered through

the jump table at location 65436 ($FF9C).

It can be used to either read or set the bottom of RAM pointer.

If called with the Carry flag set, the address in the pointer will be

loaded into the .X and .Y registers. If called with the Carry flag

cleared, the pointer will be changed to the address found in the .X

and .Y registers.

65091 $FE43
NMI Interrupt Entry Point

This routine is the NMI interrupt handler entry, which is pointed to

by the hardware NMI vector at 65530 ($FFFA).

Any time an NMI interrupt occurs, the Interrupt disable flag will

be set, and the routine will jump through the RAM vector at 792

($318), which ordinarily points to the continuation of this routine.

The standard handler first checks to see if the NMI was caused by

the RS-232 device. If not, the RESTORE key is assumed. The routine

checks for a cartridge, and if one is found it exits through the car

tridge warm start vector at 32770 ($8002). If not, the STOP key is

checked, and if it is being pressed, the BRK routine is executed. If

the RS-232 device was the cause of the NMI, the cartridge and

STOP key checks are bypassed, and the routine skips to the end,

where it checks whether it is time to send or receive a data bit via

the RS-232 device.

65126 $FE66
BRK, Warm Start Routine

This routine is executed when the STOP/RESTORE combination of

keypresses occurs. In addition, it is the default target address of the

BRK instruction vector. This routine calls the Kernal initialization

routines RESTOR, IOINIT, and part of CINT. It then exits through

the BASIC warm start vector at 40962 ($A002).
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65138 $FE72
NMI RS-232 Handler

This is the part of the NMI handler that checks if it is time to receive

or send a bit on the RS-232 channel, and takes the appropriate ac

tion if it is indeed time.

65218 $FEC2
RS-232 Baud Rate Tables for U.S. Television Standard (NTSC)

This table contains the ten prescaler values for the ten standard baud

rates implemented by the RS-232 Control Register at 659 ($293). The

table starts with the two values needed for the lowest baud rate (50

baud) and finishes with the entries for the highest baud rate, 2400

baud. The RS-232 routines are handled by NMI interrupts which are

caused by the timers on CIA #2. Since the RS-232 device could both

receive and send a bit in a single cycle, the time between interrupts

should be a little less than half of the clock frequency divided by the

baud rate. The exact formula used is:

((CLOCK/BAUD)/2)-100

where CLOCK is the processor clock speed and BAUD is the baud

rate. The clock frequency for machines using the U.S. television

standard (NTSC) is 1,022,730 cycles per second, while the frequency

for the European (PAL) standard is 985,250 cycles per second. For

this reason, separate baud rate tables were added for European ma

chines at 58604 ($E4EC).

65238 $FED6
RS-232 Receive the Next Bit (NMI)

The NMI handler calls this subroutine to input the next bit on the

RS-232 bus. It then calls the next subroutine to reload the timer that

causes the interrupts.

65306 $FF1A
Load the Timer with Prescaler Values from the Baud Rate

Lookup Table

65352 $FF48
Main IRQ/BRK Interrupt Entry Point

The 6510 hardware IRQ/BRK vector at 65534 ($FFFE) points to this
address.

Anytime the BRK instruction is encountered or an IRQ interrupt

occurs, this routine will be executed. The routine first saves the .A,

.X, and .Y registers on the stack, and then tests the BRK bit of the

status register (.P) to see if a BRK was executed. If it was, the routine
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exits through the RAM BRK vector at 790 ($316), where it will usually

be directed to the BRK routine at 65126 ($FE66). If not, the rou

tine exits through the RAM IRQ vector at 788 ($314), where it will

usually be directed to the handler that scans the keyboard at 59953

($EA31).

If you plan to change either of these vectors to your own rou

tine, remember to pull the stored register values off the stack before

finishing.

Location Range: 65371-65407 <$FF5B-
$FF7F)

Patches Added to Later Kernal Versions

This area contains additional code not found in the original version

of the Kernal. It is used to test whether a European (PAL) or U.S.

(NTSC) standard monitor is used, and to compensate so that the six

tieth of a second interrupt will be accurately timed on either system.

65371 $FF5B CINT
Initialize Screen Editor and VIC-Chip

This is a documented Kernal routine whose entry in the jump table

is located at 65409 ($FF81).

The start of the routine appears to be a patch that was added to

later versions of the Kernal. It first calls the old routine at 58648

($E518). This initializes the VIC-II chip to the default values, sets the

keyboard as the input device and the screen as the output device,

initializes the cursor flash variables, builds the screen line link table,

clears the screen, and homes the cursor. The new code then checks

the VIC interrupt register to see if the conditions for a Raster Com

pare IRQ have been fulfilled. Since the Raster Register was initial

ized to 311, that can only occur when using a PAL system (NTSC

screens do not have that many scan lines). The PAL/NTSC register

at 678 ($2A6) is set on the basis of the outcome of this test. The CIA

#1 Timer A is then set to cause an IRQ interrupt every sixtieth of a

second, using the prescaler figures for a PAL or NTSC system, as

appropriate.

65390 $FF6E
End of Routine to Set Timer for Sixtieth of a Second IRQ

This appears to be a patch added to compensate for the extra length

of the current version of this routine, which chooses either the PAL

or NTSC prescaler values for the timer.

65408 $FF80
Kernal Version Identifier Byte

This last byte before the jump table can be used to identify the ver

sion of the Kernal. The first version has a 170 ($AA) stored here,
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while the most current version at the time of this writing has a zero

in this location.

The PET 64, a one-piece version with an integrated mono

chrome display, has an identifier byte of 100 ($64). The Commodore

64 logo uses this byte to recognize the PET 64, and adjust its display

accordingly.

Location Range: 65409-65525 ($FF81-$FFF5)
Kernal Jump Table

The following jump table is provided by Commodore in an effort to

maintain stable entry points for key I/O routines. Each three-byte

table entry consists of a 6510 JMP instruction and the actual address

of the routine in the ROM. Although the actual address of the rou

tine may vary from machine to machine, or change in later versions

of the Kernal, these addresses will stay where they are. By jumping

to the entry point provided by this table, rather than directly into the

ROM, you insure your programs against changes in the Operating

System. In addition, this jump table may help you write programs

that will function on more than one Commodore machine. The 15

table entries from 65472-65514 ($FFC0-$FFEA) are the same for all

Commodore machines, from the earliest PET on.

As an additional aid, some of these routines are also vectored

through the table which starts at 788 ($314). Since this table is in

RAM, you can change those vectors to point to your own routines

which support additional I/O devices. Programs that use the jump

table entry points to the I/O routines will be able to use these I/O

devices without a problem.

The following table will give the entry point, routine name,

RAM vector if any, its current address, and a brief summary of its

function.

65409 ($FF81) CINT (65371, $FF5B) initialize screen editor

and video chip

65412 ($FF84) IOINIT (64931, $FDA3) initialize I/O devices

65415 ($FF87) RAMTAS (64848, $FD50) initialize RAM,

tape buffer, screen

65418 ($FF8A) RESTOR (64789, $FD15) restore default I/O

vectors

65421 ($FF8D) VECTOR (64794, $FD1A) read/set I/O vec

tor table

65424 ($FF90) SETMSG (65048, $FE18) set Kernal message

control flag

65427 ($FF93) SECOND (60857, $EDB9) send secondary

address after LISTEN
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65430 ($FF96) TKSA (60871, $EDC7) send secondary

address after TALK

65433 ($FF99) MEMTOP (65061, $FE25) read/set top of
memory pointer

65436 ($FF9C) MEMBOT (65076, $FE34) read/set bottom of
memory pointer

65439 ($FF9F) SCNKEY (60039, $EA87) scan the keyboard

65442 ($FFA2) SETTMO (65057, $FE21) set time-out flag
for IEEE bus

65445 ($FFA5) ACPTR (60947, $EE13) input byte from
serial bus

65448 ($FFA8) CIOUT (60893, $EDDD) output byte to
serial bus

65451 ($FFAB) UNTLK (60911, $EDEF) command serial bus
device to UNTALK

65454 ($FFAE) UNLSN (60926, $EDFE) command serial bus
device to UNLISTEN

65457 ($FFB1) LISTEN (60684, $ED0C) command serial bus
device to LISTEN

65460 ($FFB4) TALK (60681, $ED09) command serial bus
device to TALK

65463 ($FFB7) READST (65031, $FE07) read I/O status
word

65466 ($FFBA) SETLFS (65024, $FE00) set logical file

parameters

65469 ($FFBD) SETNAM (65017, $FDF9) set filename

parameters

65472 ($FFC0) OPEN (VIA 794 ($31A) TO 62282, $F34A)

open a logical file

65475 ($FFC3) CLOSE (VIA 796 ($31C) TO 62097, $F291)

close a logical file

65478 ($FFC6) CHKIN (VIA 798 ($31E) TO 61966, $F20E)

define an input channel

65481 ($FFC9) CHKOUT (VIA 800 ($320) TO 62032, $F250)

define an output channel

65484 ($FFCC) CLRCHN (VIA 802 ($322) TO 62259,

$F333) restore default devices

65487 ($FFCF) CHRIN (VIA 804 ($324) TO 61783, $F157)

input a character

65490 ($FFD2) CHROUT (VIA 806 ($326) TO 61898,

$F1CA) output a character

244



65534

65493 ($FFD5) LOAD (62622, $F49E THROUGH 816, $330)

load from a device

65496 ($FFD8) SAVE (62941, $F5DD THROUGH 818,

$332) save to a device

65499 ($FFDB) SETTIM (63204, $F6E4) set the software

clock

65502 ($FFDE) RDTIM (63197, $F6DD) read the software

clock

65505 ($FFE1) STOP (VIA 808 ($328) TO 63213, $F6ED)

check the STOP key

65508 ($FFE4) GETIN (VIA 810 ($32A) TO 61758, $F13E)

get a character

65511 ($FFE7) CLALL (VIA 812 ($32C) TO 62255, $F32F)

close all files

65514 ($FFEA) UDTIM (63131, $F69B) update the software

clock

65517 ($FFED) SCREEN (58629, $E505) read number of

screen rows and columns

65520 ($FFF0) PLOT (58634, $E50A) read/set position of

cursor on screen

65523 ($FFF3) IOBASE (58624, $E500) read base address of

I/O devices

Location Range: 65530-65535 ($FFFA-
$FFFF)

6510 Hardware Vectors

The last six locations in memory are reserved by the 6510 processor

chip for three fixed vectors. These vectors let the chip know at what

address to start executing machine language program code when an

NMI interrupt occurs, when the computer is turned on, or when an

IRQ interrupt or BRK occurs.

65530 $FFFA
Non-Maskable Interrupt Hardware Vector

This vector points to the main NMI routine at 65091 ($FE43).

65532 $FFFC
System Reset (RES) Hardware Vector

This vector points to the power-on routine at 64738 ($FCE2).

65534 $FFFE
Maskable Interrupt Request and Break Hardware Vectors

This vector points to the main IRQ handler routine at 65352 ($FF48).

245



o

o

o

■u

o

Q

o

o

o

o

o

o

Q

u

Q

y

O

O

O



Appendices



o.

o

o

Q

o

o

o

o

o

o.

o

o

D

O

O

o

o



Appendix A

A Beginner's Guide to

Typing In Programs

What Is a Program?
A computer cannot perform any task by itself. Like a car without

gas, a computer has potential but without a program, it isn't going

anywhere. Most of the programs published in this book are written

in a computer language called BASIC. BASIC is easy to learn and is

built into all Commodore 64s.

BASIC Programs
Computers can be picky. Unlike the English language, which is full

of ambiguities, BASIC usually has only one right way of stating

something. Every letter, character, or number is significant. A com

mon mistake is substituting a letter such as O for the numeral 0, a

lowercase 1 for the numeral 1, or an uppercase B for the numeral 8.

Also, you must enter all punctuation such as colons and commas just

as they appear in the book. Spacing can be important. To be safe,

type in the listings exactly as they appear.

Braces and Special Characters
The exception to this typing rule is when you see the braces, such as

{DOWN}. Anything within a set of braces is a special character or

characters that cannot easily be listed on a printer. When you come

across such a special statement, refer to Appendix B, "How to Type

In Programs."

About DATA Statements
Some programs contain a section or sections of DATA statements.

These lines provide information needed by the program. Some

DATA statements contain actual programs (called machine lan

guage); others contain graphics codes. These lines are especially sen

sitive to errors.

If a single number in any one DATA statement is mistyped,

your machine could lock up, or crash. The keyboard and STOP key

may seem dead, and the screen may go blank. Don't panic — no

damage is done. To regain control, you have to turn off your com

puter, then turn it back on. This will erase whatever program was in

memory, so always SAVE a copy of your program before you RUN it. If
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your computer crashes, you can LOAD the program and look for

your mistake.

Sometimes a mistyped DATA statement will cause an error mes

sage when the program is RUN. The error message may refer to the

program line that READs the data. The error is still in the DATA

statements, though.

Get to Know Your Machine
You should familiarize yourself with your computer before attempt

ing to type in a program. Learn the statements you use to store and

retrieve programs from tape or disk. You'll want to save a copy of

your program, so that you won't have to type it in every time you

want to use it. Learn to use your machine's editing functions. How

do you change a line if you made a mistake? You can always retype

the line, but you at least need to know how to backspace. Do you

know how to enter reverse video, lowercase, and control characters?

It's all explained in your computer's manuals.

A Quick Review
1. Type in the program a line at a time, in order. Press RETURN at

the end of each line. Use backspace or the back arrow to correct

mistakes.

2. Check the line you've typed against the line in the book. You can

check the entire program again if you get an error when you RUN

the program.
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How to Type In Programs

To make it easy to know exactly what to type when entering one of

these programs into your computer, we have established the follow

ing listing conventions.

Generally, Commodore 64 program listings will contain words

within braces which spell out any special characters: {DOWN}

would mean to press the cursor down key. {5 SPACES} would
mean to press the space bar five times.

To indicate that a key should be shifted (hold down the SHIFT

key while pressing the other key), the key would be underlined in

our listings. For example, S would mean to type the S. key while

holding the SHIFT key. This would appear on your screen as a heart

symbol. If you find an underlined key enclosed in braces (e.g.,{10

N}), you should type the key as many times as indicated (in our

example, you would enter ten shifted N's).

If a key is enclosed in special brackets, [<>], you should hold

down the Commodore key while pressing the key inside the special

brackets. (The Commodore key is the key in the lower-left corner of

the keyboard.) Again, if the key is preceded by a number, you

should press the key as many times as necessary.

Rarely, you'll see a solitary letter of the alphabet enclosed in

braces. These characters can be entered by holding down the CTRL

key while typing the letter in the braces. For example, {A} would in

dicate that you should press CTRL-A.

About the quote mode: You know that you can move the cursor

around the screen with the CRSR keys. Sometimes a programmer

will want to move the cursor under program control. That's why you

see all the {LEFT}'s, {HOME}'s, and {BLU}'s in our programs. The

only way the computer can tell the difference between direct and

programmed cursor control is the quote mode.

Once you press the quote (the double quote, SHIFT-2), you are

in the quote mode. If you type something and then try to change it

by moving the cursor left, you'll only get a bunch of reverse-video
lines. These are the symbols for cursor left. The only editing key that

isn't programmable is the DEL key; you can still use DEL to back up

and edit the line. Once you type another quote, you are out of quote
mode.

You also go into quote mode when you INSerT spaces into a
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line. In any case, the easiest way to get out of quote mode is to just

press RETURN. You'll then be out of quote mode and you can

cursor up to the mistyped line and fix it.

Use the following table when entering cursor and color control

keys:

When You

Head:

{CLR}

(HOME)

{UP}

(DOWN)

{left}

{right}

iRVS)

{OFF}

{BLK}

{WHT}

{RED}

{CYN}

{PUR}

{GRN}

(BLU)

lYEL}

Press:

When You

See: Read:

CLR/HOME

SHIFT

CLR/HOME

# CRSR^

f CRSRf
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Screen Location Table

Row

0 1024
1064

1104

1144

1184

D 1224

1264

1304

1344

1384

10 1424
1464

1504

1544

1584

15 1624
1664

1704

1744

20 1824
1864

1904

24 Z
10 15 20

Column

25 30 35 39
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Screen Color Memory

Table

Row

0 55296
55336

55376

55416

55456

3 55496

55536

55576

55616

55656

10 556%
55736

55776

55816

15 5S896
55936

55976

56016

56056

20 56096
56136

56176

24 56256

10 15 20

Column

25 30 35 39

u

y

U

u

o

u

u

u
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Screen Color Codes

Value To POKE For

Color

Black

White

Red

Cyan

Purple

Green

Blue

Yellow

Orange

Brown

Light Red

Dark Gray

Medium Gray

Light Green

Light Blue

Light Gray

Low

coloi

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Each Color

nybble High nybble Select multicolor

* value color value color value

0

16

32

48

64

80

96

112

128

144

160

176

192

208

224

240

Where To POKE Color Values For Each

Mode*

Regular text

Multicolor

text

Extended

color text f

Bitmapped

Multicolor

bitmapped

Bit or

bit-pair Location

0

1

00

01

10

11

00

01

10

11

0

1

00

01

10

11

53281

Color memory

53281

53282

53283

Color memory

53281

53282

53283

53284

Screen memory

Screen memory

53281

Screen memory

Screen memory

Color memory I

8

9

10

11

12

13

14

15

—

—

—

—

—

—

—

—

Mode

Color value

Low nybble

Low nybble

Low nybble

Low nybble

Low nybble

Select multicolor

Low nybble

Low nybble

Low nybble

Low nybble

Low nybble $

High nybble $

Low nybble

High nybble J

Low nybble ^

,ow nvbble
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* For all modes, the screen border color is controlled by POKEing

location 53280 with the low nybble color value.

| In extended color mode, Bits 6 and 7 of each byte of screen mem

ory serve as the bit-pair controlling background color. Because only

Bits 0-5 are available for character selection, only characters with

screen codes 0-63 can be used in this mode.

£ In the bitmapped modes, the high and low nybble color values are

ORed together and POKEd into the same location in screen memory

to control the colors of the corresponding cell in the bitmap. For

example, to control the colors of cell 0 of the bitmap, OR the high

and low nybble values and POKE the result into location 0 of screen

memory.
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Appendix F

ASCII

5

8

9

13

14

V

18

19

20

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

CHARACTER

WHITE

DISABLE

SHIFT COMMODORE

ENABLE

SHIFT COMMODORE

RETURN

LOWERCASE

CURSOR DOWN

REVERSE VIDEO ON

HOME

DELETE

RED

CURSOR RIGHT

GREEN

BLUE

SPACE
1

it

#

$

%

&

(

)
*

+

—

/

0

1

ASCII

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

CHARACTER

2

3

4

5

6

7

8

9

:

<

>

?

@

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R
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ASCII

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

CHARACTER

S

T

U

V

W

X

Y

Z

£

t

B

□

a

□

□
s

□

□

D
Q

ASCII

120

121

122

123

124

125

126

127

129

133

134

135

136

137

138

139

140

141

142

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

CHARACTER

ORANGE

fl

f3

B

£7

a

f4

f6

f8

SHIFTED RETURN

UPPERCASE

BLACK

CURSOR UP

REVERSE VIDEO OFF

CLEAR SCREEN

INSERT

BROWN

LIGHT RED

GRAY1

GRAY 2

LIGHT GREEN

LIGHT BLUE

GRAY 3

PURPLE

CURSOR LEFT

YELLOW

CYAN

SPACE

■
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ASCII

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

CHARACTER

H

n
□

B
a

m
a
E

U

H

□
n
u

a
H
a
H
E
B
B

m
B

□
B
D

Asai

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

CHARACTER

a

s

□
a
n
D

||

a

E
E
m

a
SPACE

□

o

a

B
a

a
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ASCII

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

04, 6, 7,10-12,15,16, 21-27,128,

130-132, and 143 are not used.

CHARACTER

u

H
H

□
n

□
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Screen Codes

»OKE

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

Uppercase and

Full Graphics Set

@

A

B

C

D

E

F

G

H

I

J
K

L

M

N

O

P

Q
R

S

T

U

V

W

X

Y

Z

[

£
]

t

Lower- and

Uppercase

@

a

b

c

d

e

f

g

h

i

j
k

1

m

n

o

P

q

r

s

t

u

V

w

X

y

z

[

£
]

f

POKE

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

Uppercase and

Full Graphics Set

<-

Lower- and

Uppercase

«-

-space-

"

#

$

%

&

'

(

)

*

+

-

/

0

1

2

3

4

5

6

7

8

9

:

<

!

#

$
%

&

'

(

)
*

+

-

m

i

0

1

2

3

4

5

6

7

8

9

:

•

<

=
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POKE

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

Uppercase and Lower- and

Full Graphics Set Uppercase

B

m
B
B

D

□
□

D

□
□

m

H

I

Q

B
A

B

C

D

E

F

G

H

I

J
K

L

M

N

O

P

Q
R

S

T

U

V

w

X

Y

Z

POKE

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

Uppercase and

Full Graphics Set

□
D
□

a
Q

B

Li
H.

U

B
H

H
ffl
D

C
a

u

□

H
H
E
H

Lower- and

Uppercase

□
D
□

a

0
a

E
a
E
E)
u

H

c
a
D
n

a
E
B

-space-
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Commodore 64 Keycodes

Key Keycode Key Keycode

A 10 6 19

B 28 7 24

C 20 8 27

D 18 9 32

E 14 0 35

F 21 + 40

G 26-43

H 29 £ 48

I 33 CLR/HOME 51

J 34 INST/DEL 0

K 37 *- 57

L 42 @ 46

M 36 49

N 39 t 54

O 38 : 45

P 41 ; 50

Q 62 53

R 17 RETURN 1

S 13 47

T 22 44

U .30 / 55

V 31 CRSRU 7

W 9 CRSR^T 2

X 23 fl 4

Y 25 f3 5

Z 12 f5 6

1 56 f7 3

2 59 SPACE 60

3 8 RUN/STOP 63

4 11 NO KEY

5 16 PRESSED 64

The keycode is the number found at location 197 for the current

key being pressed. Try this one-line program:

10 PRINT PEEK (197): GOTO 10
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o

Q

y

o

u

u

o

o

o

Q

U

O

U

o

o

o

u

o
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Index (By Memory Location)

ABS 48216

AND 45033

ASC 46987

ATN 58126

BASIC

adding new commands 115, 768

current line number 57

execution of statements 776, 42980

expression evaluation 778, 44446,

44675

function evaluation 44967

pointer to bottom of string text 51

pointer to current data item

address 65

pointer to current statement

address 61

pointer to end of array storage 49

pointer to start of array storage 47

pointer to start of program text 43

pointer to start of variable storage 45

pointer to top of BASIC RAM 55

program text storage 2048

RAM vector table 768

Buffer

cassette I/O buffer 178,828

keyboard buffer 198,631

RS-232 input buffer 247

RS-232 output buffer 249

text input buffer 512

cartridge, autostart ROM 32768

cassette

data output line 01

I/O buffer 828

Kernal ROM routines 63466-64737

motor control 01, 192

switch sense 01

character generator ROM 01, 4096,

36864, 53248

character graphics 53248

CHAREN 01

CHRGET 115,58274

CHR$ 46828

CIA (Complex Interface Adapter)

CIA#1 56320-56335

CIA #2 56576-56591

data direction registers 56322, 56323,

56578, 56579

data ports 56320, 56321, 56576,

56577

timers 56334, 56335, 56590, 56591

clock

clock speed (6510

microprocessor) 56334

software clock 160

Time of Day clock 56328, 56584

CLOSE 57799

CLR 42590

CMD 43654

cold start, BASIC 40960, 58260

color

background 53281

border (frame) 53280

color codes 646

color RAM nybbles 55296

current character color 646

multicolor background

registers 53282, 53283

PETASCII color change

characters 59601

sprite color registers 53287-53294

sprite multicolor registers 53285,

53286

CONT 43095

COS 57956

DATA 43256

data direction register 00, 56322, 56323,

56578, 56579

data port 01, 56320, 56321, 56576,

56577

DEF 46003

DIM 45185

dynamic keyboard 198, 631

error

BASIC error handler 768, 42039,

58251

error message control flag 157

I/O error status 144

RS-232 I/O error status 663

EXP 49133

expression evaluation 778, 44446, 44675

floating point

addition 47207, 47210

division 47887, 47890

fixed-floating point conversion 05,

45969

floating-fixed point conversion 03,

45482, 45503

Floating Point Accumulators 97, 110

floating point-ASCII

conversion 48605
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multiplication 47656, 47667

subtraction 47194, 47197

FN 46068

FOR 42818

FRE 45949

garbage collection, string variable 46374

GET, GET# 43899

GOSUB 43139

GOTO 43168

graphics

bitmapped graphics 53265

character graphics 53248

extended background color

mode 53265

fine scrolling 53265, 53271

multicolor mode 53271

raster position 53265, 53266

screen blanking 53265

sprites See sprite graphics

HIRAM 01

IF 43304

INT 48332

interrupt

CIA hardware FLAG line 56589,

56333

CIA serial shift register 56589, 56333

CIA Time of Day clock alarm 56589,

56333

CIA Timers A and B 56589, 56333

IRQ handler 59953, 65352

IRQ vector 788, 65534

light pen IRQ 53273, 53274

NMI handler 65091

NMI vector 792, 65530

raster compare IRQ 53266, 53273,

53274

sprite-display data collision

IRQ 53273, 53275

sprite-sprite collision IRQ 53273,

53275

INPUT 43967

INPUT# 43941

I/O

current device number 186

current filename address 187

current filename length 183

current input device 153

current I/O channel number 19

current logical file number 184

current output device 154

current secondary address 185

device number table 611

logical file table 601

number of I/O files open 152

RS-232 status 663

secondary address table 621

status word codes 144

joystick controllers 56320, 56321

Kernal

jump table 65409

RAM vector table 794

ACPTR 60947, 65445

CHKIN 798, 61966, 65478

CHKOUT 800, 62032, 65481

CHRIN 804, 61783, 65487

CHROUT 806, 61898, 65490

CINT 65371, 65409

CIOUT 60893, 65448

CLALL 812, 62255, 65511

CLOSE 796,62097,65475

CLRCHN 802, 62259, 65484

GETIN 810, 61758, 65508

IOBASE 58624, 65523

IOINIT 64931, 65412

LISTEN 60684, 65457

LOAD 816, 62622, 65493

MEMBOT 65076, 65436

MEMTOP 65061, 65433

OPEN 794, 62282, 65472

PLOT 58634, 65520

RAMTAS 64848, 65415

RDTIM 63197, 65502

READST 65031, 65463

RESTOR 64789, 65418

SAVE 818,62941,65496

SCNKEY 60039, 65439

SCREEN 58629, 65517

SECOND 60857, 65427

SETLFS 65024, 65466

SETMSG 65048, 65424

SETNAM 65017, 65469

SETTIM 63204, 65499

SETTMO 65057, 65442

STOP 808, 63213, 65505

TALK 60681, 65460

TKSA 60871, 65430

UDTIM 63131, 65514

UNLSN 60926,65454

UNTLK 60911, 65451

VECTOR 64794, 65421

keyboard

current key pressed 203

keyboard buffer 631

keycodes 203

keyboard matrix 245, 655, 56321

last key pressed 197

number of characters in buffer 198

pointer to matrix lookup table 245

reading the keyboard 56320

repeating keys 650

LEFT$ 46848

LEN 46972
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LET 43429

light pen 53267, 53268

LIST 42652

LOAD 57704

LORAM 01

MID$ 46903

NEW 42562

NEXT 44318

NMI 65095

ON GOSUB, ON GOTO 43339

OPEN 57790

Operating System (OS)

OS end of RAM pointer 643

OS screen memory pointer 648

OS start of RAM pointer 641

OR 45030

paddle controllers 54297, 54298

paddle fire button 56320, 56321

PAL/NTSCflag 678

PEEK 47117

POKE 47140

POS 45982

PRINT 43680

PRINT# 43648

program text area 43, 2048

program text input buffer 512

RAM

BASIC pointer to end of RAM 55

RAM/ROM selection 01

OS pointer to end of RAM 643

OS pointer to start of RAM 641

random number generator 54299

READ 44038

registers, reading/setting from

BASIC 780

REM 43323

RESET, power-on 64738, 65532

reset, VIC-II chip 53270

RESTORE 43037

RESTORE key, disabling 792, 808

RETURN 43218

RIGHT$ 46892

RND 139,57495

RS-232

baud rate 659, 661, 665

baud rate tables 58604, 65218

buffers 247, 249

command register 660

connector pin assignments 56576,

56577

control register 659

duplex mode 660

handshaking protocol 660

Kernal ROM routines 57344-65535

parity 660

status register 663

stop bits 659

word length 659

RUN 43121

SAVE 57686

screen editor

current character color 646

cursor color RAM position 243

cursor flash 204, 205, 207

cursor maintenance 206, 647

cursor screen position 209, 211, 214

insert mode flag 216

key repeat 650, 651, 652

quote mode flag 212

reverse character flag 199

screen line link table 217

screen RAM 1024, 648, 53272

shift flag 653, 654

Serial Bus I/O 56576, 60681-61114

Serial Data Port (CIA) 56332, 56588

SGN 48185

SID chip register 54272-54300

see also sound
SIN 57960

sound

ADSR envelope control 54278-54279,

54285-54286, 54292-54293

filtering 54293-54296

frequency (pitch) control 54272-

54273, 54279-54280, 54286-54287

gate bit 54276

Oscillator 3 envelope generator 54300

Oscillator 3 output 54299

pulse waveform pulse width 54274-

54275, 54281-54282, 54288-54289

ring modulation 54276, 54283, 54290

synchronization (hard sync) 54276,

54283, 54290

volume control 54296

waveform control 54276, 54283,

54290

sprite graphics

color registers 53287-53294

display priority 53275

enabling sprite display 53274

horizontal expansion 53277

multicolor color registers 53285-53286

multicolor sprites 53276

position registers 53248-53264

shape data pointers 2040

sprite-display data collision

detection 53279

sprite-sprite collision detection 53278

vertical expansion 53271

SQR 49009

ST (I/O status word) 144

stack, 6510 microprocessor 256
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STOP 43055

STOP key 145,808

STR$ 46181

SYS 780,57642

TAN 56083

Time of Day clock 56328-56331, 56584-

56587

timers, hardware 56324-56327, 56334-

56335, 56580-56583, 56590-56591

tokens, keyword 772, 774, 40972, 41042,

41088, 41118, 42364, 42772

User Port 56567-56577

USR 785

VAL 47021

variable

array variable storage 47

find or create variable routine 45195

storage format 45

string text area 51

VERIFY 57701

VIC-II CHIP

memory bank switching 56576

registers 53248-53294

see also graphics, sprite graphics
warm start, BASIC 40962, 58235

WAIT 47149

wedges 115
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If you've enjoyed the articles in this book, you'll find
the same style and quality in every monthly issue of
COMPUTE!^ Gazette for Commodore.

For Fastest Service

Call Our Toil-Free US Order Line

800-334-0868
In NC call 919-275-9809

computers®Mmmwwm
P.O. Box 5406

Greensboro, NC 27403

My computer is:

□ Commodore 64 □ VIC-20 □ Other.
02 03

□ $20 One Year US Subscription
□ $36 Two Year US Subscription
□ $54 Three Year US Subscription

Subscription rates outside the US:

□ $25 Canada
□ $45 Air Mail Delivery
□ $25 International Surface Mail

Name

Address

City State Zip

Country

Payment must be in US Funds drawn on a US Bank International Money

Order, or charge card. Your subscription will begin with the next avail

able issue. Please allow 4-6 weeks for delivery of first issue. Subscription

prices subject to change at any time.

□ Payment Enclosed

n MasterCard

Acct. No.

□ VISA

□ American Express

Expires

23-X

The COMPUTER'S Gazette subscriber list is made available to carefully screened organiza

tions with a product or service which may be of interest to our readers. If you prefer not to

receive such mailings, please check this box □.
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If you've enjoyed the articles in this book, you'll find the
same style and quality in every monthly issue of COMPUTE!
Magazine. Use this form to order your subscription to
COMPUTE!.

For Fastest Service,

Call Our Toll-Free US Order Line

800-334-0868
In NC call 919-275-9809

COMPUTE!
P.O. Box 5406

Greensboro. NC 27403

My Computer Is:

□ Commodore 64 QTI-99/4A □ Timex/Sinclair DVIC-20 H
□ Radio Shack Color Computer □ Apple □ Atari □ Other.
□ Don't yet have one...

□ $24 One Year US Subscription
□ $45 Two Year US Subscription
□ $65 Three Year US Subscription

Subscription rates outside the US:

□ $30 Canada
□ $42 Europe, Australia, New Zealand/Air Delivery
□ $52 Middle East, North Africa, Central America/Air Mail
□ $72 Elsewhere/Air Mail
□ $30 International Surface Mail (lengthy, unreliable delivery)

Name

Address

PET

City State Zip

Country

Payment must be in US Funds drawn on a US Bank; International Money

Order, or charge card.

□ Payment Enclosed □ VISA

□ MasterCard □ American Express

Ace t. No. Expires /
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COMPUTE! Books
P.O. Box 5406 Greensboro. NC 27403

Ask your retailer for these COMPUTE! Books. If he or she

has sold out order directly from COMPUTE!

For Fastest Service

Call Our TOLL FREE US Order Line

800-334-0868
In NC call 919-275-9809

Quantity Title

Machine Language for Beginners

Home Energy Applications

COMPUTED First Book of VIC

COMPUTED Second Book of VIC

COMPUTED First Book of VIC Games

COMPUTED F.rst Book of 64

COMPUTED First Book of Atari

COMPUTED Second Book of Atari

COMPUTED First Book of Atari Graphics

COMPUTED First Book of Atari Games

Mapping The Atari

Inside Atari DOS

The Atari BASIC Sourcebook

Programmer's Reference Guide for TI-99/4A

COMPUTED First Book of Tl Games

Every Kid's First Book of Robots and Computers

. The Beginner's Guide to Buying A Personal

Computer

Price

$14.95*

$14.95*

$12.95*

$12.95*

$12.95*

$12.95*

$12.95*

$12.95*

$12.95*

$12.95*

$14.95*

$19.95*

$12.95*

$14.95*

$12.95*

$ 4.95t

$ 3.95t

' Add $2 shipping and handling Outside US add $5 air mail; $2

surface mail

t Add $1 shipping and handling. Outside US add $5 air mail; $2

surface mail

Please add shipping and handling for each book

ordered.

Total enclosed or to be charged.

Total

All orders must be prepaid (money order, check, or charge). All

payments must be in US funds. NC residents add 4% sales tax.

□ Payment enclosed Please charge my: □ VISA □ MasterCard

□ American Express Acc't. No. Expires /

Name

Address

City State Zip

Country

Allow 4-5 weeks for delivery.

23-X
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